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Mechanism of stochastic resonance enhancement in neuronal models driven by 1/f noise
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Noise can assist neurons in the detection of weak signals via a mechanism known as stochastic resonance
~SR!. In a previous study@Phys. Lett. A243, 281 ~1998!#, we showed that when colored noise with 1/f b

spectrum is added to the FitzHugh-Nagumo~FHN! neuronal model, the optimal noise variance for SR could be
minimized withb'1. In this study, we investigate analytically how the noise color (b) affects the SR profile
in a linearized version of the FHN model. We demonstrate that the aforementioned effect of 1/f noise is related
to the dynamical characteristics of the model neuron, i.e., the refractory period, the low-pass filtering effect of
the membrane capacitance, and the high-pass filtering effect of the recovery variable.
@S1063-651X~99!11110-3#

PACS number~s!: 87.80.Tq, 05.40.Ca
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I. INTRODUCTION

It has recently been recognized that noise can enhanc
response of nonlinear systems to weak signals, via a me
nism known asstochastic resonance~SR! @1#. SR was origi-
nally proposed to account for the periodic recurrences of
Earth’s ice ages@2#. Thereafter, the phenomenon has be
demonstrated in a wide range of systems, including bista
physical systems@1,3# and excitable systems@4,5#. The con-
cept of SR has generated considerable interest in sen
biology, because it has been shown in several experime
studies that noise can assist neural systems in detecting
threshold signals@4–6#. These results suggest a possib
functional role for noise in sensory neurophysiological s
tems.

In the majority of previous SR studies, white noise w
flat power spectrum~i.e., noise without any time correlatio
or with short-time correlation! has been used as the additi
noise source. However, colored noise with a 1/f b-type power
spectrum~i.e., noise with long-range correlation! has been
reported in many biological systems@7#. For instance, this
type of noise has been found in the cat sensory system@8#,
the human autonomic nervous system@9#, and the human
motor system@10#. In most cases, the value ofb is nearly
equal to 1, which corresponds to well-known 1/f noise.
~Note that for conventional white noise,b50.!

In spite of the ubiquitousness of 1/f noise in biological
and physiological systems, its functional significance, if a
has not been elucidated. Accordingly, it is interesting to c
sider whether 1/f b noise can play a significant role for SR.
partial answer has already been provided: it has been sh
that 1/f noise can induce SR in Schmitt triggers@11# and
nondynamical threshold systems@12#. It is further interesting
to consider whether 1/f noise can be better than convention
white noise for producing SR-type effects. Such an analy
may provide insight into the possible functional role of 1f
noise in biological and physiological systems.
PRE 601063-651X/99/60~4!/4637~8!/$15.00
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Recently, we studied SR in a neuronal model driven
1/f b noise~with a relatively wide bandwidth! and examined
how the value ofb affects the SR profile@13#. We consid-
ered the FitzHugh-Nagumo~FHN! neuronal model@14#:

« v̇5v~v2a!~12v !2w1A1S~ t !1j~ t !, ~1!

ẇ5v2w2b, ~2!

where v is a fast variable representing the neuronal me
brane voltage,w is a slow ‘‘recovery’’ variable,A is a con-
stant~dc! input,S(t) is an aperiodic subthreshold signal wi
zero mean,j(t) is Gaussian 1/f b noise (0<b<2) with zero
mean and variancesN

2 @15#, «!1, a50.5, andb50.15. SR
effects were evaluated by examining the following inpu
output coherence measures@5#:

C05^^S~ t !R~ t !&&, ~3!

C15
C0

^^S2~ t !&&1/2
ŠŠ@R~ t !2^^R~ t !&&#2

‹‹

1/2
, ~4!

whereR(t) is the firing frequency of the model neuron an
the double angular brackets denote averages over timeC0
andC1, respectively, represent the cross power and the n
malized cross power betweenS(t) andR(t).

In Ref. @13#, we showed computationally@16# that 1/f b

noise can induce SR, i.e., the above input-output cohere
measures are maximized by a particular level~i.e., variance!
of input noise. Furthermore, we found that the optimal no
variance that maximizes the coherence measures can
minimized with b'1 ~Fig. 1!. This finding indicates that
with 1/f noise, a weaker noise level, as compared with wh
noise, is sufficient for the model neuron to detect a giv
subthreshold signal. Our aims in this paper are~1! to extend
this work by developing a mechanistic understanding of
4637 © 1999 The American Physical Society
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4638 PRE 60NOZAKI, COLLINS, AND YAMAMOTO
effects of noise color~i.e., b) on SR profiles in model neu
rons, and~2! to investigate the effects of noise bandwidth
the SR profile. The latter aim is motivated by the fact that
statistical properties of 1/f b noise depend on the data lengt
thus, it is natural to consider whether the observed effect
1/f noise are robust to different noise bandwidths.

This paper is organized as follows. In Sec. II, we propo
a linearized version of the FHN model and show that t
system exhibits SR properties similar to those for the origi
FHN model, e.g., the optimal noise variance can be m
mized withb'1. We also introduce a method for obtainin
the theoretical relationship betweenC0 andsN

2 . In Sec. III,
we show that in a neuronal model lacking a recovery va
able, the optimal noise variance is minimized withb52.
This finding indicates that a recovery variable is importa
for minimizing the optimal noise variance withb'1. In Sec.
IV we consider a resettable system with a refractory peri
and using the method proposed in Sec. II, derive theore
SR curves for the system. In Sec. V we investigate the in
ences of the refractory period and the effects of noise ba
width on the SR profile. Finally, in Sec. VI, we summari
our results and discuss their implications.

FIG. 1. Ensemble-averaged values and standard errors foC0

andC1 ~500 trials! for different levels of input noise variancesN
2 in

the FHN model~white noise, open circles; 1/f noise, filled circles;
1/f 2 noise, open squares!. The variance ofS(t) is 5.031025, «
50.005, andA50.04. The bandwidth of the noise is 0.0305–1
Hz.
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II. LINEARIZED FHN MODEL WITHOUT RESET

When the value of« in Eq. ~1! is sufficiently small, the
slow variablew @Eq. ~2!# can be approximated asw5v*
2b, where the subscript * indicates the fixed point. Wi
this approximation and taking into account the nonlinear
bic term in Eq.~1!, the FHN model can be regarded as ha
ing a fourth-order bistable potential function. For this ca
the firing rate of the noise-driven FHN model corresponds
the escape rate of a particle over the potential barrier. In R
@5#, Collinset al.considered a noise-driven FHN model wi
a subthreshold input signal and derived, using Kram
theory @17#, a theoretical prediction for the input-output co
herency as a function of the input noise intensity. In gene
however, it is difficult to obtain the escape rate when t
input noise has time correlations.~The input noise in Ref.@5#
was white noise.! In Ref. @18#, Hänggi et al. introduced a
method for obtaining theoretical predictions of SR profil
when the input noise is exponentially correlated. Th
method, however, cannot be applied to 1/f b noise because
such noise cannot be expressed as an ordinary Markov
cess. To our knowledge, there is no general theoret
method for predicting the escape rate for systems with in
noise with long-range correlation. Because of these lim
tions, we consider in this paper a simpler, linearized FH
~LFHN! model, which is described below.

When the neuronal firings are infrequent, the variablev
andw primarily fluctuate around the stable fixed points (v*
andw* , respectively!. Thus, the cubic term in Eq.~1! can be
expanded around the stable fixed point asv* 2g(v2v* ). In
this study, we useg50.3, which is nearly equal to
2]v@v(v2a)(12v)#uv5v

*
. The dynamics around the res

ing values then obey the following equations:

« v̇52gv2w1S~ t !1j~ t !, ~5!

ẇ5v2w, ~6!

where we recast the variables asv5v2v* and w5w
2w* , for convenience. In the original FHN model, firin
events can occur spontaneously when a sufficiently large
put signal is added to the system. However, the LFHN mo
@Eqs.~5! and~6!# does not have a mechanism for generat
action potentials. Thus, we assume that a narrow puls
generated when the value ofv crosses a threshold value wit
positive v̇. In this section, we consider the case where
generation of pulses does not affect the values ofv andw.

Because the dynamics of the LFHN model are linear,
can obtain the system’s transfer function by applying
Laplace transform to Eqs.~5! and ~6! for the case ofS(t)
50:

«sV~s!52gV~s!2W~s!1N~s!, ~7!

sW~s!5V~s!2W~s!, ~8!

whereV(s), W(s), and N(s) are the Laplace transform o
v(t), w(t), and j(t), respectively. The transfer functio
from the inputj(t) to the outputv(t) is
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FIG. 2. ~a! Squared gain of the frequency re
sponse function of the LFHN model given by Eq
~10!. f t represents the frequency where the fr
quency response function is maximal~'2.53
Hz!. ~b!–~d! Ensemble-averaged values and sta
dard errors forC0 ~500 trials! for different levels
of input noise variancesN

2 in the LFHN model
~white noise, open circles; 1/f noise, filled
circles; 1/f 2 noise, open squares!. The variance of
S(t) is 3.031026, «50.005, andu50.03. The
bandwidth of the noise is 0.0305–100 Hz~b!,
0.0305–200 Hz~c!, and 0.0305–10 Hz~d!. The-
oretical predictions from Eq.~20! are given by
the solid lines. The amplitude of^C0& is adjusted
for b50. The amplitude of̂C0& for b51 and 2,
respectively, is scaled by this value.
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xvj~s!5
V~s!

N~s!
5

1

«s1g11/~s11!
. ~9!

Therefore, the squared gain of the frequency response f
tion is

uxvj~ j 2p f !u2

5
~4p2f 211!2

@g~4p2f 211!11#214p2f 2@«~4p2f 211!21#2
,

~10!

where f is frequency andj 5A21. This function is hump-
shaped in log-log space@Fig. 2~a!#, indicating that it works
both as a low-pass filter and a high-pass filter. The low-p
filtering effect is due to the membrane capacitance of
model neuron, whereas the high-pass filtering effect is du
the recovery variablew. @Note that Eq.~7! without W(s)
indicates the low-pass filtering effect onN(s).#

We assume thatj(t) has a power-law spectrumPN( f )
5k1f 2b, wherek1 is a constant. Thus, the noise variancesN

2

is

sN
2 5k1k2E

f l

f h
f 2bd f , ~11!

wheref l and f h , respectively, are the lower and upper limi
of the noise bandwidth andk2 is a constant. Sincev can be
regarded by the system as filtered 1/f b noise, the power spec
trum of the variablev @Pv( f )# can be expressed as

Pv~ f !5k1f 2buxvj~ j 2p f !u2. ~12!

Using Eqs.~11! and ~12!, the variance ofv (sv
2) can be

expressed as

sv
25h~b!sN

2 , ~13!

where
c-

ss
e
to

h~b!5

E
f l

f h
f 2buxvj~ j 2p f !u2d f

E
f l

f h
f 2bd f

. ~14!

The functionh(b) represents the way in which the nois
power is modulated by the system’s filtering effect.

Since the 1/f b noise used in this study is stationary, th
variablev ~i.e., the filtered 1/f b noise! is also stationary with
zero mean@19#. With this assumption, the~firing! frequency
^r 0& ~where the bracketŝ & denote the ensemble averag!
with which the variablev crosses a thresholdu can be ob-
tained using Rice’s theorem@12,20#:

^r 0&5F E
f l

f h
f 2Pv~ f !d f

E
f l

f h
Pv~ f !d f

G 1/2

expS 2u2

2sv
2 D . ~15!

By substituting Eqs.~12! and ~13! into Eq. ~15!, we obtain

^r 0&5g~b!expF 2u2

2h~b!sN
2 G , ~16!

where

g~b!5F E
f l

f h
f 22buxvj~ j 2p f !u2d f

E
f l

f h
f 2buxvj~ j 2p f !u2d f

G 1/2

. ~17!

If the dynamics ofS(t) are sufficiently slow compared to th
characteristic time of the system, then the resting value ov
fluctuates with time asv(t)5S(t)/(11g). Therefore, the
distance to the threshold changes with time asu2S(t)/(1
1g). Taking this into account, the time-dependent firing fr
quency^r (t)&, for S(t)/(11g)!u, can be approximated a
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FIG. 3. ~a! Squared gain of the frequency re
sponse function of the IF model given by Eq
~22!. ~b!–~d! Ensemble-averaged values and sta
dard errors forC0 ~500 trials! for different levels
of input noise variancesN

2 in the IF model~white
noise, open circles; 1/f noise, filled circles; 1/f 2

noise, open squares!. The variance ofS(t) is 3.0
31026, g50.3, andu50.03. The bandwidth of
the noise is 0.0305–100 Hz~b!, 0.0305–200 Hz
~c!, and 0.0305–10 Hz~d!. Theoretical predic-
tions from Eq.~20! are given by the solid lines
The amplitude of̂ C0& is adjusted forb50. The
amplitude of^C0& for b51 and 2, respectively,
is scaled by this value. Note that the optim
noise variance is the smallest whenb52, al-
though this is not readily apparent for~b! and~c!
because the amplitude of^C0& is small.
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^r ~ t !&'g~b!expF2u212uS~ t !/~11g!

2h~b!sN
2 G . ~18!

Since the ensemble average operation does not affectS(t),
^C0& in Eq. ~3! can be rewritten as

^C0&5ŠŠS~ t !^R~ t !‹‹. ~19!

By expanding Eq.~18! to the first order ofS(t) and substi-
tuting this into Eq.~19!, we obtain

^C0&'
ug~b!ŠŠS~ t !2

‹‹

~11g!h~b!sN
2

expF2
u2

2h~b!sN
2 G . ~20!

From Eq.~20!, we can predict two features of the SR profi
for the LFHN model:~1! the maximal value of̂ C0& is ob-
served whensN

2 5u2/@2h(b)#, and~2! the maximal value of
^C0& is proportional to the value ofg(b). Figures 2~b!–2~d!
indicate that these predictions are supported by our num
cal results, i.e., the theoretical curves nicely fit the compu
tional results.

In a previous study@13#, we considered SR in a nondy
namical threshold system. In that case, a narrow pulse
generated when the sum of 1/f b noise and a given inpu
signal crossed a threshold in a positive direction. For t
system, we found that the optimal value ofsN

2 was indepen-
dent of b. In contrast, Figs. 2~b!–2~d! indicate that for the
LFHN model ~which includes dynamical effects!, the opti-
mal noise variance depends on the value ofb. In addition,
the LFHN model realizes the smallest noise variance forf
noise@Fig. 2~b!#, when the noise bandwidth of Fig. 1 is use
This effect is enhanced whenf h is increased@Fig. 2~c!#;
however, it is not observed whenf h is reduced@Fig. 2~d!#.
Thus, the effect of minimizing the optimal noise varian
with 1/f noise depends on the noise bandwidth.

III. INTEGRATE-AND-FIRE MODEL WITHOUT RESET

As shown in the previous section, the dynamical featu
of the LFHN model are essential for obtaining the describ
ri-
-

as

t

/
.

s
d

effects of 1/f noise on the SR profile. One of the majo
characteristics of the LFHN model is the presence of a
covery variable. If the system does not have a recovery v
able, then the frequency response function and the de
dence ofh(b) on the value ofb change. To study the effect
of a recovery variable on the observed dynamics, we c
sider in this section the following simple model:

« v̇52gv1S~ t !1j~ t !. ~21!

In this model, the recovery variablew of Eqs.~5! and ~6! is
omitted. As before, we assume that a narrow pulse is ge
ated whenv crosses a threshold valueu, without resetting.
We call this model an integrate-and-fire~IF! model~without
reset!.

As in Sec. II, the fluctuations ofv are regarded as filtere
1/f b noise. For the IF model, the squared gain of the f
quency response function forS(t)50 is a well-known
Lorentzian type:

uxvj~ j 2p f !u25
1

g214p2f 2«2
. ~22!

This function works as a low-pass filter@Fig. 3~a!#.
Figures 3~b!–3~d! show numerical results for the IF

model and theoretical predictions given by Eq.~20!. It can be
seen that the theoretical predictions derived for the LFH
model nicely fit the computational results, i.e., they are
plicable to the IF model. Although the computational resu
in Figs. 3~b!–3~d! look similar to those in Fig. 2~b!–2~d!, an
important difference should be noted: namely, that the o
mal noise variance is the smallest forb52 for all noise
bandwidths.@This is ambiguous especially for~b! and ~c!,
because the amplitude of^C0& is small.#

Figure 4 clearly shows that for the IF model, the optim
noise variance is the smallest forb52. It can be seen tha
the value ofh(b) increases monotonically withb @Fig. 4~a!#.
As pointed out in Sec. II, a largerh(b) means that the opti-
mal noise variance is smaller. In contrast, for the LFH
model, the value ofh(b) is maximized at intermediate val
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FIG. 4. Plots ofh(b) andg(b) versusb for
the IF and LFHN models. The functionsh(b)
and g(b) are calculated numerically from Eq
~14! and Eq.~17!, respectively, and normalized
by their respective values forb50. The model
parameters are the same as those for Fig. 2.
lower limit of the noise bandwidthf l is fixed at
0.0305 Hz.
ue

an
th
tio
el

st

h
th

nd

el

u
e

fi
e
c
n

fo

g

n
N
on
th

th

sm,
el.
tic

am-

ner-

e
h

-
se
,

d
-

he

us

n the

be-
e

the

his
ues ofb ~between 0 and 2!, except whenf h510 Hz @Fig.
4~b!#. For both the IF model and the LFHN model, the val
of g(b) decreases monotonically withb @Figs. 4~c! and
4~d!#.

The difference between the response of the IF model
that of the LFHN model can be explained by considering
shape of the squared gain of the frequency response func
uxvj( j 2p f )u2, for the two systems. In case of the IF mod
the system works as a low-pass filter to input noise@Fig.
3~a!#. The power lost by the filtering effect is the large
when b50, because, with smallerb, a larger amount of
power is distributed at higher frequencies. Considering t
h(b) represents the ratio of noise power transmitted to
filtered noise,h(b) for the IF model increases withb mono-
tonically. This effect does not depend on the noise ba
width.

On the other hand, in case of the LFHN mod
uxvj( j 2p f )u2 is hump-shaped@Fig. 2~a!#, i.e., it works not
only as a low-pass filter but also as a high-pass filter. Th
the monotonic increase ofh(b) with b cannot necessarily b
expected because, while the power lost by the low-pass
tering effect decreases asb increases, the power lost by th
low-pass filtering effect increases. Given that these effe
are always reciprocal,h(b) can have a maximal value at a
intermediate value ofb ~between 0 and 2!. It is important to
note that the noise bandwidth can affect this relationship:
example, the high-pass filtering effect dominates whenf h is
not considerably larger thanf t , which is the frequency
whereuxvj( j 2p f )u2 is maximized@Fig. 2~a!#. Thus,h(b) is
the largest whenb50, as shown by the curve forf h510 Hz
in Fig. 4~b!.

Thus, a critical feature in the LFHN model for obtainin
the smallest optimal noise variance withb'1 is thath(b)
can be maximized whenb'1. In contrast, this phenomeno
is never seen in the IF model, which differs from the LFH
model in that it lacks a recovery variable. We can thus c
clude that a recovery variable is needed for obtaining
smallest optimal noise variance withb'1.

IV. LINEARIZED FHN MODEL WITH RESET

In Sec. II, we derived a theoretical curve for^C0& versus
sN

2 for the LFHN model and captured the dependence of
d
e
n,

,

at
e

-

,

s,

l-

ts

r

-
e

e

optimal noise variance on the value ofb. However, the
LFHN model does not account for the resetting mechani
and thus the refractory period, of the original FHN mod
Therefore, in this section, we consider a more realis
model: namely, a model with the same subthreshold dyn
ics as the LFHN model, but one in which the values ofv and
w are reset to some fixed values just after a pulse is ge
ated. ~In the computer simulations, the values ofv and w
were reset to 1.0 and 0.15, respectively.! As a result of this
resetting mechanism, a refractory periodTR ('0.5 s), simi-
lar to that for the original FHN model, is realized in th
model. Hereafter, we will refer to the LFHN model wit
reset as the RLFHN model.

Figures 5~a!, 5~c!, and 5~e! depict the results from com
puter simulations with the FHN model. The optimal noi
variance is smaller for 1/f noise, compared to white noise
when f h5100 Hz@Fig. 5~a!#; this effect is more pronounce
when f h5200 Hz @Fig. 5~c!#. However, this effect disap
pears whenf h510 Hz @Fig. 5~e!#. Figures 5~b!, 5~d!, and
5~f! indicate that similar results can be obtained with t
RLFHN model.

We now derive the theoretical prediction for^C0& versus
sN

2 , using the level-crossing frequency, as in the previo
sections. The basic idea is as follows: the variablesv andw
return, after a reset event, to the same values as those i
LFHN model because the fixed values ofv andw in Eqs.~5!
and ~6! are stable. This means that the main difference
tween the RLFHN model and the LFHN model is that som
action potentials are ignored in the LFHN model due to
refractory period. We consider the case whereN action po-
tentials are ignored due to the refractory period. For t
case, the following inequality must hold:

NT,TR,~N11!T, ~23!

whereT51/̂ r (t)&. Note that^r (t)& is the firing frequency
for the LFHN model obtained in Sec. II. From Eq.~23!, we
can obtain

~TR2T!/T,N,TR /T. ~24!
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FIG. 5. Ensemble-averaged values and st
dard errors forC0 ~500 trials! for different levels
of input noise variancesN

2 for the FHN model
@~a!, ~c!, and~e!# and the RLFHN model@~b!, ~d!,
and ~f!#. The model parameters are the same
those for Fig. 1~FHN model! and Fig. 2~RLFHN
model!. The bandwidth of the noise is 0.0305
100 Hz @~a! and ~b!#, 0.0305–200 Hz@~c! and
~d!#, and 0.0305–10 Hz@~e! and~f!#. Theoretical
predictions from Eq.~27!, with TR50.5 s, are
given by the solid lines. In each plot, the amp
tude of ^C0& for each type of noise is scaled b
the value of̂ C0& for b50 in the LFHN model.
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We selectN5(TR20.5T)/T, satisfying Eq. ~24!. In this
case, we can expect a mean interspike interval of (N11)T
.TR10.5T. Therefore, the firing frequency for the RLFH
model ^R(t)& is given by

^R~ t !&5
2^r ~ t !&

112TR^r ~ t !&
. ~25!

Substituting Eq.~18! into Eq. ~25! and expanding it in a
Taylor series in S(t) gives ^R(t)&. When S(t)/(11g)
5Sg(t)!u, retaining only the lowest-order term gives

^R~ t !&'
2^r 0&

112TR^r 0&
F11

u

sv
2~112TR^r 0&!

Sg~ t !G .

~26!

By substituting Eqs.~13! and ~26! into Eq. ~19!, we obtain

^C0&'
2uŠŠS~ t !2

‹‹^r 0&

~11g!h~b!sN
2 ~112TR^r 0&!2

. ~27!

Note that Eq.~27! is also applicable to other resettable sy
tems that have different frequency response functions.

When the results for the RLFHN model@Figs. 5~b!, 5~d!,
and 5~f!# are compared with those for the LFHN mod
@Figs. 2~b!, 2~c!, and 2~d!#, it can be seen that the optima
noise variance and the amplitude of^C0& for the RLFHN
-

model is much reduced, and the differences in amplitude
^C0& between the three types of noise are decreased.
theory given by Eq.~27! predicts these properties quite a
curately, as shown by the solid lines in Figs. 5~b!, 5~d!, and
5~f!.

V. INFLUENCES OF REFRACTORY PERIOD
AND NOISE BANDWIDTH

In the LFHN model, the optimal noise variance and t
amplitude of ^C0& are directly related toh(b) and g(b),
respectively @Eq. ~20!#. However, in the RLFHN model,
^C0& is dependent on various parameters, such ash(b),
g(b), u, and TR , in a complex manner. Thus, analytic
expressions for the maximal value of^C0& and the optimal
noise variance cannot be obtained. Nonetheless, we can
sider qualitatively how a refractory period~i.e., resetting
mechanism! affects the SR profile.

To obtain the optimal noise variance, we differentiate E
~27! by sv

2 and set this to 0. The optimal value ofsv
2 (svo

2 )
should satisfy

u222sv
2

u212sv
2

expS u2

2sv
2D 52TRg~b!. ~28!

The left-hand side of Eq.~28! decreases monotonically wit
sv

2 and is equal to 0 whensv
25u2/2. Therefore,svo

2 is less
than u2/2 because 2TRg(b).0. Note thatsvo

2 is equal to
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FIG. 6. Contour plots of̂ C0&
versusb ~abscissa! andsN

2 ~ordi-
nate! for various noise bandwidths
in the RLFHN model. In each
plot, the value of̂ C0& is normal-
ized by the maximal value of^C0&
for white noise (b50). Lighter
colors indicate higher values o
^C0&, as shown by the legend
These theoretical predictions ar
given by Eq. ~27! with TR50.5.
Other parameters are the same
those for Fig. 2.
it
i-

l

f

he
r-

vi

ic

el
-
p

e-
f

e of

el,

ec.

N
ed
e
N

one

pe-

the
ov-
e-

the
of

pe-

in
tain
o-
the
u2/2 for the LFHN model@Eq. ~20!#, indicating that the op-
timal noise variance is always smaller for the system w
reset. Furthermore, assuming thatg(b) decreases monoton
cally with b as shown in Fig. 4~d!, svo

2 can be expected to
increase withb. Thus, with a refractory period, the optima
noise variance can be minimized forb'1; however, the
differences between the optimal noise variance forb50 and
b'1 are reduced. This can be seen by comparing results
the RLFHN model@Figs. 5~b!, 5~d!, and 5~f!# with those for
the LFHN model@Figs. 2~b!, 2~c!, and 2~d!#.

By substituting Eq.~28! into Eq. ~27!, the maximal value
of the cross power,̂C0&max, can be obtained as

^C0&max}Dg~b!, ~29!

where

D5
~u212svo

2 !2

svo
2

expS 2
u2

2svo
2 D . ~30!

Equation ~29! indicates that̂ C0&max in the LFHN model
@}g(b)# is modulated byD, which is a monotonically in-
creasing function ofsvo

2 . Considering thatsvo
2 increases

with b while g(b) decreases withb, D is also a monotoni-
cally increasing function ofb. Thus, the refractory period in
the RLFHN model works to reduce the differences in t
value of^C0&max for different b, as can be seen by compa
ing results for the RLFHN model@Figs. 5~b!, 5~d!, and 5~f!#
with those for the LFHN model@Figs. 2~b!, 2~c!, and 2~d!#.

The SR profile is also affected by the noise bandwidth
both g(b) and h(b). More specifically, the effect of mini-
mizing the optimal noise variance with 1/f noise depends on
the noise bandwidth, as shown in Fig. 5. Figure 6 dep
contour plots of the theoretical predictions for^C0& versusb
and sN

2 for various noise bandwidths in the RLFHN mod
@Eq. ~27!#. When f h520 Hz, the ability to detect a sub
threshold signal, from the standpoint of minimizing the o
timal noise variance and maximizing^C0&max, is the greatest
h

or

a

ts

-

for b'0. However, asf h increases, the superiority ofb
'1, in terms of minimizing the optimal noise variance, b
comes clearer~Fig. 6!. On the other hand, the value o
^C0&max for b'1 relative to that forb50 decreases asf h
increases. It is interesting to note, however, that the valu
^C0&max of the RLFHN model forb'1 is maintained to be
approximately 50% of that forb50 even whenf h reaches
20 000 Hz. This relatively high level of̂C0&max for b'1 is
due to the refractory period, because in the LFHN mod
which lacks a refractory period, the value of^C0&max for b
'1 is suppressed to approximately 4% of that forb50
when f h reaches 20 000 Hz. The value off l does not have a
significant influence on these effects. As discussed in S
III, if f l is larger thanf t or if f h is smaller thanf t , then the
superiority of 1/f noise cannot be expected.

VI. CONCLUSIONS AND IMPLICATIONS

Here we showed that in a linearized version of the FH
model, the optimal noise variance for SR can be minimiz
when 1/f b noise withb'1 is added to the system. As w
noted, similar dynamics are exhibited by the original FH
model. We also showed that the linearized model allows
to obtain the theoretical curve for̂C0& versussN

2 and to
clarify the mechanisms underlying this phenomenon. S
cifically, we showed that whenb'1, the interaction of the
low-pass filtering effect of the membrane capacitance of
model neuron and the high-pass filtering effect of the rec
ery variable serves~1! to shape the squared gain of the fr
quency response function in the form of a hump, and~2! to
maximize the power transfer ratio from the input noise to
membrane voltage. Moreover, we showed that in terms
the input-output coherency, the existence of a refractory
riod is advantageous forb'1.

The aforementioned dynamical properties are found
real neurons. Thus, if the noise bandwidth satisfies cer
conditions, 1/f noise may be better than white noise for pr
ducing SR in real neural systems. The same effect, using
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output signal-to-noise ratio as the input-output cohere
measure, has been demonstrated theoretically in model
rons and experimentally in rat sensory neurons@21#.

Although 1/f noise is commonly observed in physiolog
cal systems@7–10#, its functional significance has not bee
fully elucidated. Our finding that 1/f noise can be suitable
for SR in model neurons leads to the hypothesis thatf
noise might be operative in certain neural systems for det
ing weak signals.
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