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Noise can assist neurons in the detection of weak signals via a mechanism known as stochastic resonance
(SR). In a previous studyPhys. Lett. A243 281 (1998], we showed that when colored noise witH#A/
spectrum is added to the FitzHugh-Nagu(R&iIN) neuronal model, the optimal noise variance for SR could be
minimized with B~ 1. In this study, we investigate analytically how the noise col) &ffects the SR profile
in a linearized version of the FHN model. We demonstrate that the aforementioned effechois¥ is related
to the dynamical characteristics of the model neuron, i.e., the refractory period, the low-pass filtering effect of
the membrane capacitance, and the high-pass filtering effect of the recovery variable.
[S1063-651%99)11110-3

PACS numbegs): 87.80.Tq, 05.40.Ca

[. INTRODUCTION Recently, we studied SR in a neuronal model driven by
1/f# noise(with a relatively wide bandwidthand examined
It has recently been recognized that noise can enhance tii®w the value of8 affects the SR profil¢13]. We consid-
response of nonlinear systems to weak signals, via a mechared the FitzHugh-Nagum@HN) neuronal mode[14]:
nism known asstochastic resonand&R) [1]. SR was origi-
nally proposed to account for the periodic recurrences of the sv=v(v—a)(1-v)—w+A+S(t)+ &), (1)
Earth’s ice age$2]. Thereafter, the phenomenon has been
demonstrated in a wide range of systems, including bistable
physical systemgl,3] and excitable systenid,5]. The con-

cept of SR has generated considerable interest in sensOfyherey is a fast variable representing the neuronal mem-
biology, because it has been shown in several experimentglane yoltagew is a slow “recovery” variable A is a con-
studies that_n0|se can assist neural systems in detectlng 5U§{ant(dc) input, S(t) is an aperiodic subthreshold signal with
threshold S|gnals[4—€_5]. These results suggest a possmlezero meang(t) is Gaussian T£ noise (0< 8<2) with zero
functional role for noise in sensory neurophysiological SYS1hean and variance?2 [15], <1, a=0.5, andb=0.15. SR

N y y — U.J, — U. .

tems. L L
. . . . . .., effects were evaluated by examining the following input-
In the majority of previous SR studies, white noise with output coherence measurlé:

flat power spectrunti.e., noise without any time correlation

or ywth short-time correlationhas bgen u_sed as the additive Co=((S(HR(D))), 3)

noise source. However, colored noise with &1tfype power

spectrum(i.e., noise with long-range correlatipmas been

reported in many biological systemig]. For instance, this C,= Co

type of noise has been found in the cat sensory sy$8im {(SPONWYHR(E) — ((R(1))) 122

the human autonomic nervous syst¢®, and the human

motor systen{10]. In most cases, the value @ is nearly  whereR(t) is the firing frequency of the model neuron and

equal to 1, which corresponds to well-knownf liioise.  the double angular brackets denote averages over f{iye.

(Note that for conventional white noisg=0.) andC,, respectively, represent the cross power and the nor-
In spite of the ubiquitousness offlhoise in biological malized cross power betwedft) andR(t).

and physiological systems, its functional significance, if any, In Ref.[13], we showed computationalljl6] that 1f#

has not been elucidated. Accordingly, it is interesting to connoise can induce SR, i.e., the above input-output coherence

sider whether ¥F noise can play a significant role for SR. A measures are maximized by a particular le¥el., variance

partial answer has already been provided: it has been showsf input noise. Furthermore, we found that the optimal noise

that 1f noise can induce SR in Schmitt triggdrkl] and  variance that maximizes the coherence measures can be

nondynamical threshold systefi?]. It is further interesting minimized with B~1 (Fig. 1). This finding indicates that

to consider whether L/noise can be better than conventional with 1/f noise, a weaker noise level, as compared with white

white noise for producing SR-type effects. Such an analysisoise, is sufficient for the model neuron to detect a given

may provide insight into the possible functional role of 1/ subthreshold signal. Our aims in this paper @neto extend

noise in biological and physiological systems. this work by developing a mechanistic understanding of the

w=v—w—Db, 2)

(4)
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| Op=0 @p=1 Op=2 | Il. LINEARIZED FHN MODEL WITHOUT RESET

When the value ot in Eq. (1) is sufficiently small, the
slow variablew [Eq. (2)] can be approximated as=v,
—b, where the subscript * indicates the fixed point. With
- this approximation and taking into account the nonlinear cu-
bic term in Eq.(1), the FHN model can be regarded as hav-
o 0 ing a fourth-order bistable potential function. For this case,
" e * % i i the firing rate of the noise-driven FHN model corresponds to
il the escape rate of a particle over the potential barrier. In Ref.
B i ® E [5], Collinset al. considered a noise-driven FHN model with
g a subthreshold input signal and derived, using Kramers
theory[17], a theoretical prediction for the input-output co-
herency as a function of the input noise intensity. In general,
however, it is difficult to obtain the escape rate when the
input noise has time correlationdhe input noise in Ref5]
was white noise.In Ref. [18], Hanggi et al. introduced a
method for obtaining theoretical predictions of SR profiles
when the input noise is exponentially correlated. This
method, however, cannot be applied td”Lhoise because
o o] such noise cannot be expressed as an ordinary Markov pro-
) ) cess. To our knowledge, there is no general theoretical
method for predicting the escape rate for systems with input
noise with long-range correlation. Because of these limita-
° = tions, we consider in this paper a simpler, linearized FHN
01re L (LFHN) model, which is described below.
B © When the neuronal firings are infrequent, the variables
0 2 ) o 3 10 5 andw primarily fluctuate around the stable fixed points, (
4.2 andw, , respectively. Thus, the cubic term in Eq1) can be
10°On expanded around the stable fixed poinvgs- y(v—v,). In

FIG. 1. Ensemble-averaged values and standard error€dor this study, we usey=0.3, which is . nearly equal to
andC, (500 trialg for different levels of input noise varianes, in ~ — av[v(v—a)(l—v)]|\,:v*. The dynamics around the rest-
the FHN modelwhite noise, open circles; flhoise, filled circles; ing values then obey the following equations:
1/f2 noise, open squargsThe variance ofS(t) is 5.0<10° 5, ¢
:0.005, andA=0.04. The bandwidth of the noise is 0.0305-100 ev=—yv—W+S(t)+ &(t), (5)
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. . - w=v—w, (6)
effects of noise colofi.e., 8) on SR profiles in model neu-
rons, and?2) to investigate the effects of noise bandwidth on\here we recast the variables as=v—v. and w=w
*

the SR profile. The latter aim is motivated by the fact thatthe_,y  for convenience. In the original FHN model, firing

statistical properties of 1# noise depend on the data length; events can occur spontaneously when a sufficiently large in-
thus, it is natural to consider whether the observed effects gjut signal is added to the system. However, the LFHN model
1/f noise are robust to different noise bandwidths. [Egs.(5) and(6)] does not have a mechanism for generating
This paper is organized as follows. In Sec. |, we proposeaction potentials. Thus, we assume that a narrow pulse is
a linearized version of the FHN model and show that thisgenerated when the value wfcrosses a threshold value with
system exhibits SR properties similar to those for the originahositive v. In this section, we consider the case where the
FHN model, e.g., the optimal noise variance can be minigeneration of pulses does not affect the values ahdw.
mized with3~1. We also introduce a method for obtaining  Because the dynamics of the LFHN model are linear, we

the theoretical relationship betwe&y and Uﬁ. In Sec. lll,  can obtain the system’s transfer function by applying the
we show that in a neuronal model lacking a recovery vari-Laplace transform to Eqg5) and (6) for the case ofS(t)
able, the optimal noise variance is minimized wijg+2. =0:

This finding indicates that a recovery variable is important

for minimizing the optimal noise variance wi=1. In Sec. esV(s)=—yV(s) —W(s)+N(s), (7

IV we consider a resettable system with a refractory period,

and using the method proposed in Sec. Il, derive theoretical sW(s)=V(s)—W(s), (8

SR curves for the system. In Sec. V we investigate the influ-

ences of the refractory period and the effects of noise bandwhereV(s), W(s), andN(s) are the Laplace transform of
width on the SR profile. Finally, in Sec. VI, we summarize v(t), w(t), and &(t), respectively. The transfer function
our results and discuss their implications. from the inputé(t) to the outputv(t) is
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FIG. 2. (a) Squared gain of the frequency re-
sponse function of the LFHN model given by Eq.
(10). f, represents the frequency where the fre-
quency response function is maximé=2.53
Hz). (b)—(d) Ensemble-averaged values and stan-
dard errors foIC, (500 trialg for different levels
of input noise variancerg in the LFHN model
(white noise, open circles; fl/ noise, filled
circles; 1f2 noise, open squargsThe variance of
S(t) is 3.0x10°®, £=0.005, and9=0.03. The
bandwidth of the noise is 0.0305-100 Hi),
0.0305-200 HZc), and 0.0305-10 Hzd). The-
oretical predictions from Eq(20) are given by
the solid lines. The amplitude ¢€) is adjusted
for 8=0. The amplitude ofCg) for =1 and 2,
respectively, is scaled by this value.
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= = . f 8 xye(j2mt)|?df
h(B)= H : (14)
Therefore, the squared gain of the frequency response func- f-Adf
tion is f,
|xve(j2mf)[? The functionh(B) represents the way in which the noise
power is modulated by the system’s filtering effect.
B (4m?f2+1)? Since the 1#® noise used in this study is stationary, the
_[y(4772f2+1)+1]2+4772f2[s(4772f2+ 1)— 1]2’ variablev (i.e., the filtered 1f/® noise is also stationary with

zero meari19]. With this assumption, théiring) frequency
(100 (ry) (where the bracket$) denote the ensemble average

) i o with which the variablev crosses a threshold can be ob-
wheref is frequency and =+ —1. This function is hump-  (5ined using Rice’s theorefl2,20;:
shaped in log-log spadd-ig. 2(a)], indicating that it works

both as a low-pass filter and a high-pass filter. The low-pass fh 12

filtering effect is due to the membrane capacitance of the J 2P, (f)df _ g

model neuron, whereas the high-pass filtering effect is due to (ro)= N exp( _) _ (15)
the recovery variablev. [Note that Eq.(7) without W(s) ffhp (f)df 203

indicates the low-pass filtering effect &é(s).] Y

We assume thag(t) has a power-law spectrumy(f)
=k,f~#, wherek, is a constant. Thus, the noise variamxﬁg By substituting Egqs(12) and (13) into Eq. (15), we obtain
is

_ 02
f <ro>=g(ﬂ)exr{—], (16)
0,2\,=k1k2J "t-Bdf, (11) 2h(B) o}
f)
where
wheref, andf,,, respectively, are the lower and upper limits
of the noise bandwidth ankl, is a constant. Since can be oo g _ 1M
regarded by the system as filtered”lhoise, the power spec- f P27 P xve(i 2 ) |*df
trum of the variables [P, (f)] can be expressed as g(B)= 'f (17)
h
_ . f P j27f)|2df
Pu(f) =kt el 272 (12 Jfl Ixuel 2D
Using Egs.(11) and (12), the variance ofv (0\2,) can be If the dynamics ofS(t) are sufficiently slow compared to the
expressed as characteristic time of the system, then the resting value of
fluctuates with time aw(t)=S(t)/(1+y). Therefore, the
o2=h(B)o?, (13)  distance to the threshold changes with timefasS(t)/(1

+ 7). Taking this into account, the time-dependent firing fre-
where quency(r(t)), for S(t)/(1+ y)<#6, can be approximated as
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(a) b FIG. 3. (a) Squared gain of the frequency re-
10k sponse function of the IF model given by Eq.

r e (22). (b)—(d) Ensemble-averaged values and stan-
dard errors foIC, (500 trialg for different levels
of input noise variance, in the IF modekwhite
noise, open circles; i/noise, filled circles; 1
L . noise, open squaresthe variance of5(t) is 3.0
10% 10% 10% 107 10° 10" 167 10° X 1078, y=0.3, and#=0.03. The bandwidth of
Frequency (Hz) 10" Oy the noise is 0.0305—100 Hb), 0.0305-200 Hz
(c), and 0.0305-10 HZd). Theoretical predic-
tions from Eq.(20) are given by the solid lines.
The amplitude of Cy) is adjusted for3=0. The
amplitude of(Cy) for B=1 and 2, respectively,
is scaled by this value. Note that the optimal
noise variance is the smallest wh¢h=2, al-
though this is not readily apparent f@) and(c)
because the amplitude ¢€,) is small.
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— 62+20S(t)/(1+ ) effects of 1f noise on the SR profile. One of the major
~ characteristics of the model is the presence of a re-
(r(t))~g(B)ex o )02 (18 ch istics of the LFHN model is th f
(Bloy covery variable. If the system does not have a recovery vari-

able, then the frequency response function and the depen-
dence oth(B) on the value of3 change. To study the effects

of a recovery variable on the observed dynamics, we con-
(Co)={S((R(H))). (19)  sider in this section the following simple model:

Since the ensemble average operation does not eyt
(Cyp) in Eq. (3) can be rewritten as

By expanding Eq(18) to the first order ofS(t) and substi- ev=—ywW+S(t)+ &(t). (21

tuting this into Eq.(19), we obtain
In this model, the recovery variabie of Egs.(5) and(6) is
09(B){(S(t)2)) 6? omitted. As before, we assume that a narrow pulse is gener-
(Co)= 2 & — 2| (20 ated whenv crosses a threshold valu without resetting.
(1+y)h(B)oy 2h(B)oy : . ; ;
We call this model an integrate-and-fil€) model (without
From Eq.(20), we can predict two features of the SR profile resej.
for the LFHN model:(1) the maximal value of Cy) is ob- As in Sec. ll, the fluctuations of are regarded as filtered
served whem§=92/[2h(,8)], and(2) the maximal value of 1/f# noise. For the IF model, the squared gain of the fre-
(Cy) is proportional to the value af(3). Figures 2b)—2(d) ~ quency response function fog(t)=0 is a well-known
indicate that these predictions are supported by our numerl-orentzian type:
cal results, i.e., the theoretical curves nicely fit the computa-
tional results. . 2
In a previous study13], we considered SR in a nondy- [xve(i2mf)]= Pt An?i2e?’

namical threshold system. In that case, a narrow pulse was
generated when the sum off£/noise and a given input This function works as a low-pass filtEFig. 3(a)].
signal crossed a threshold in a positive direction. For that Figures 3b)-3(d) show numerical results for the IF
system, we found that the optimal valuedf was indepen-  model and theoretical predictions given by E20). It can be
dent of 8. In contrast, Figs. @)—2(d) indicate that for the seen that the theoretical predictions derived for the LFHN
LFHN model (which includes dynamical effegtsthe opti-  model nicely fit the computational results, i.e., they are ap-
mal noise variance depends on the valuggofin addition,  plicable to the IF model. Although the computational results
the LFHN model realizes the smallest noise variance for 1/in Figs. 3b)—3(d) look similar to those in Fig. ®)—2(d), an
noise[Fig. 2(b)], when the noise bandwidth of Fig. 1 is used. important difference should be noted: namely, that the opti-
This effect is enhanced whefy, is increasedFig. 2(c)l;  mal noise variance is the smallest =2 for all noise
however, it is not observed whef is reducedFig. 2d)].  bandwidths.[This is ambiguous especially fdb) and (c),
Thus, the effect of minimizing the optimal noise variancebecause the amplitude ¢€,) is small]

(22

with 1/f noise depends on the noise bandwidth. Figure 4 clearly shows that for the IF model, the optimal
noise variance is the smallest f@=2. It can be seen that
lll. INTEGRATE-AND-FIRE MODEL WITHOUT RESET the value oh(B) increases monotonically with [Fig. 4@)].

As pointed out in Sec. I, a largér(8) means that the opti-
As shown in the previous section, the dynamical featuresnal noise variance is smaller. In contrast, for the LFHN
of the LFHN model are essential for obtaining the describednodel, the value oh(B) is maximized at intermediate val-
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LFHN model

R(B)/h(0)
h(B)/h(0)

FIG. 4. Plots ofh(B) andg(B) versusp for
the IF and LFHN models. The functiorty(3)
and g(B) are calculated numerically from Eq.
(14) and Eq.(17), respectively, and normalized
by their respective values fg=0. The model
parameters are the same as those for Fig. 2. The
lower limit of the noise bandwidtf, is fixed at
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ues of 8 (between 0 and )2 except whenf,=10 Hz [Fig.
4(b)]. For both the IF model and the LFHN model, the value
of g(B) decreases monotonically witp [Figs. 4c) and
4(d)].

optimal noise variance on the value @f However, the

LFHN model does not account for the resetting mechanism,
and thus the refractory period, of the original FHN model.
nEherefore, in this section, we consider a more realistic

The difference between the response of the IF model aé‘nodel' namely, a model with the same subthreshold dynam
that of the LFHN model can be explained by considering th ’ ' ; . )
P y g l¢s as the LFHN model, but one in which the valuev @&tnd

shape of the squared gain of the frequency response functiolr, i , !
|va(j277f)|z, for the two systems. In case of the IF model, W are reset to some flxeq valu_es just after a pulse is gener-
the system works as a low-pass filter to input ndiEe. ated. (In the computer simulations, _the values \ofandvy
3(a)]. The power lost by the filtering effect is the largest Were reset to 1.0 and 0.15, respectivelys a result of this
when 8=0, because, with smalleg, a larger amount of resetting mechanism, a refractory peribgl (~0.5 s), simi-
power is distributed at higher frequencies. Considering thalar to that for the original FHN model, is realized in the
h(B) represents the ratio of noise power transmitted to thenodel. Hereafter, we will refer to the LFHN model with
filtered noiseh(B) for the IF model increases with mono-  reset as the RLFHN model.
tonically. This effect does not depend on the noise band- Figures %a), 5(c), and %e) depict the results from com-
width. puter simulations with the FHN model. The optimal noise

On the other hand, in case of the LFHN model, variance is smaller for £/noise, compared to white noise,
|xve(i27f)]? is hump-shapedFig. 2a)], i.e., it works not  whenf, =100 Hz[Fig. 5@a]; this effect is more pronounced
only as a low-pass filter but also as a high-pass filter. Thusyhen f, =200 Hz [Fig. 5(c)]. However, this effect disap-
the monotonic increase i ) with 8 cannot necessarily be pears whenf, =10 Hz [Fig. 5€)]. Figures %b), 5(d), and
expected because, while the power lost by the low-pass fils(f) jndicate that similar results can be obtained with the
tering effect decreases @sincreases, the power lost by the R EHN model.
low-pass fllterlng effect increases. Given _that these effects \ye now derive the theoretical prediction f€,) versus
are always reciprocah() can have a maximal value at an 0%, using the level-crossing frequency, as in the previous
intermediate value oB (between 0 and)21t is important to . . . ) .

. ; ; . .~ . _sections. The basic idea is as follows: the variablesdw

note that the noise bandwidth can affect this relationship: forf

. S . X return, after a reset event, to the same values as those in the
example, the high-pass filtering effect dominates whers LEHN model because the fixed valuesvondw in Egs. (5)
not considerably larger thaf,, which is the frequency |

) 2. - ) . and (6) are stable. This means that the main difference be-
r\r’]zelraer')g’ss‘t(ﬁg)'_g I::);Ir:gvzvidt[)ﬂ?ﬁezgzl]fvz}gsf(1'(8))|—Ilsz tween the RLFHN model and the LFHN model is that some
in Fig 94(b) B=0, y h= action potentials are ignored in the LFHN model due to the

" . .. refractory period. We consider the case whRraction po-
Thus, a critical feature in the LFHN model for obtaining . . . .
the smallest optimal noise variance wigh-1 is thath() tentials are ignored due to the refractory period. For this

can be maximized whe~1. In contrast, this phenomenon case, the following inequality must hold:
is never seen in the IF model, which differs from the LFHN

model in that it lacks a recovery variable. We can thus con- NT<Tr<(N+1)T, (23
clude that a recovery variable is needed for obtaining the
smallest optimal noise variance wigr1. whereT=1/r(t)). Note that(r(t)) is the firing frequency
for the LFHN model obtained in Sec. Il. From E®3), we
IV. LINEARIZED FHN MODEL WITH RESET can obtain

In Sec. I, we derived a theoretical curve f&€,) versus
aﬁ for the LFHN model and captured the dependence of the (TR—T)/IT<N<TRI/T. (29
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0 3_5 ‘g 5 FIG. 5. Ensemble-averaged values and stan-
10° G2 dard errors foiC, (500 trialg for different levels
N of input noise variancerg for the FHN model
! [(@, (c), and(e)] and the RLFHN modél(b), (d),
g and (f)]. The model parameters are the same as
3 ) o ® o those for Fig. XFHN mode) and Fig. 2(RLFHN
v N o mode). The bandwidth of the noise is 0.0305—
=, B 0 g g 100 Hz [(a) and (b)], 0.0305-200 HZ(c) and
* . (d)], and 0.0305-10 HE(e) and(f)]. Theoretical
1 - .
o ) ) predictions from Eq.(27), with Tg=0.5's, are
10 15 20 given by the solid lines. In each plot, the ampli-
10' O tude of (C,) for each type of noise is scaled by
6 the value of(C,) for =0 in the LFHN model.
5 |©
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We selectN=(Tr—0.5T)/T, satisfying Eq.(24). In this  model is much reduced, and the differences in amplitude of
case, we can expect a mean interspike intervalNof- Q)T (Cp) between the three types of noise are decreased. The
=Tg+0.5T. Therefore, the firing frequency for the RLFHN theory given by Eq(27) predicts these properties quite ac-
model(R(t)) is given by curately, as shown by the solid lines in Figgb)s 5(d), and
5(f).
2(r(t
<R(t>>=<i()>. (25
1+2Tg(r(t)) V. INFLUENCES OF REFRACTORY PERIOD
AND NOISE BANDWIDTH
Substituting Eq.(18) into Eg. (25 and expanding it in a
Taylor series inS(t) gives (R(t)). When S(t)/(1+ )
=S,(t)< 6, retaining only the lowest-order term gives

In the LFHN model, the optimal noise variance and the
amplitude of(Cg) are directly related th(B) and g(B),
respectively[Eq. (20)]. However, in the RLFHN model,
(Cyp) is dependent on various parameters, suchth@s),

2(ro) 0 g9(B), 6, and Tg, in a complex manner. Thus, analytical
(R(1))~ +— S,(t)|. expressions for the maximal value ¢E,) and the optimal
1+2Tg(ro) oy (1+2Tr(ro)) 26) noise variance cannot be obtained. Nonetheless, we can con-

sider qualitatively how a refractory period.e., resetting
mechanism affects the SR profile.

By substituting Eqs(13) and (26) into Eq.(19), we obtain To obtain the optimal noise variance, we differentiate Eq.
(27) by o2 and set this to 0. The optimal value of (o2,
should satisfy

20(S(1)*)Xr o
(Co~ UMD gy
(1+y)h(B)oN(1+2Tr(ro))
0°—20; 62
Note that Eq.(27) is also applicable to other resettable sys- 0°+ 207 20,

tems that have different frequency response functions.

When the results for the RLFHN modgtigs. 5b), 5(d),
and 3f)] are compared with those for the LFHN model The left-hand side of Eq28) decreases monotonically with
[Figs. 2b), 2(c), and Zd)], it can be seen that the optimal o2 and is equal to 0 when2= #?/2. Thereforeo? is less
noise variance and the amplitude (@) for the RLFHN than #%/2 because 2rg(8)>0. Note thato\z,O is equal to
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£,=200
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L N FIG. 6. Contour plots ofCy)
versusp (abscisspand o (ordi-
nate for various noise bandwidths
az = in the RLFHN model. In each
o) L plot, the value of Cy) is normal-
3 2 ized by the maximal value diC,)
- e} for white noise 3=0). Lighter
colors indicate higher values of
(Cy), as shown by the legend.
T These theoretical predictions are
g given by Eq.(27) with Tg=0.5.
| = Other parameters are the same as
| ] those for Fig. 2.
2 0 1 2

0.5
Relative value of <Co>

-

62/2 for the LFHN mode[Eq. (20)], indicating that the op- for B8~0. However, asf, increases, the superiority ¢#
timal noise variance is always smaller for the system with~1, in terms of minimizing the optimal noise variance, be-
reset. Furthermore, assuming tlgd3) decreases monotoni- comes clearei(Fig. 6). On the other hand, the value of
cally with 8 as shown in Fig. @), 0\2,0 can be expected to (Cp)max for B~1 relative to that for3=0 decreases af,
increase withg. Thus, with a refractory period, the optimal increases. It is interesting to note, however, that the value of
noise variance can be minimized f@~1; however, the (Co)max Of the RLFHN model for8~1 is maintained to be
differences between the optimal noise varianceder0 and  approximately 50% of that foB=0 even whenf, reaches
B~1 are reduced. This can be seen by comparing results fg0 000 Hz. This relatively high level dfCq)max for f~1 is

the RLFHN mode[Figs. 5b), 5(d), and %f)] with those for  due to the refractory period, because in the LFHN model,

the LFHN model[Figs. 2b), 2(c), and Zd)]. which lacks a refractory period, the value &) max for 8
By substituting Eq(28) into Eq.(27), the maximal value =~1 is suppressed to approximately 4% of that =0
of the cross power,Cy)max, Can be obtained as whenf,, reaches 20 000 Hz. The value igfdoes not have a
significant influence on these effects. As discussed in Sec.
(Co)maxA0(B), (29 W, if f, is larger tharf, or if f, is smaller tharf,, then the
superiority of 1f noise cannot be expected.
where
A (6%+202,)2 p( 62 ) @0 VI. CONCLUSIONS AND IMPLICATIONS
= e —
0\2,0 2050 Here we showed that in a linearized version of the FHN

model, the optimal noise variance for SR can be minimized
Equation(29) indicates thaCo)max in the LFHN model  when 1f# noise with ~1 is added to the system. As we
[>g(B)] is modulated byA, which is a monotonically in- noted, similar dynamics are exhibited by the original FHN
creasing function ofoj,. Considering thato?, increases model. We also showed that the linearized model allows one
with B while g(8) decreases witl8, A is also a monotoni- to obtain the theoretical curve fdiC,) versuso? and to
cally increasing function of. Thus, the refractory period in clarify the mechanisms underlying this phenomenon. Spe-
the RLFHN model works to reduce the differences in thecifically, we showed that whepg~1, the interaction of the
value of(Co)nax for different 8, as can be seen by compar- |ow-pass filtering effect of the membrane capacitance of the
ing results for the RLFHN mod¢Figs. §b), 5(d), and %f)]  model neuron and the high-pass filtering effect of the recov-
with those for the LFHN moddlFigs. 2b), 2(c), and 2d)].  ery variable serve§l) to shape the squared gain of the fre-

The SR profile is also affected by the noise bandwidth Viaquency response function in the form of a hump, é2dto

both g(8) andh(). More specifically, the effect of mini- maximize the power transfer ratio from the input noise to the
mizing the optimal noise variance withflhoise depends on membrane voltage. Moreover, we showed that in terms of
the noise bandwidth, as shown in Fig. 5. Figure 6 depictshe input-output coherency, the existence of a refractory pe-
contour plots of the theoretical predictions {@,) versusg riod is advantageous fg8~1.
and o2 for various noise bandwidths in the RLFHN model ~ The aforementioned dynamical properties are found in
[Eg. (27)]. When f,=20 Hz, the ability to detect a sub- real neurons. Thus, if the noise bandwidth satisfies certain
threshold signal, from the standpoint of minimizing the op-conditions, 1f noise may be better than white noise for pro-
timal noise variance and maximizif€)max, 1S the greatest ducing SR in real neural systems. The same effect, using the
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