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Abstract

We investigate the stochastic resonance in a FitzHugh1Nagumo neuronal model driven by colored noise with a 1/fβ

spectrum (0 6 β 6 2). A numerical simulation shows that the noise intensity needed to maximize the coherence between
input and output signals is the smallest when β ≈ 1. We also demonstrate analytically that this phenomenon is never seen
in a nondynamical threshold system. c© 1998 Elsevier Science B.V.
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1. Introduction

It has recently been recognized that stochastic
noise can enhance the response of nonlinear sys-
tems to a weak signal [21,27]. Since the response
is optimized by a particular level of noise inten-
sity, this phenomenon is called “stochastic resonance
(SR)” [21,27]. Originally, SR was proposed as a
theoretical explanation why the ice-age occurred peri-
odically [1]. After that, the phenomenon was widely
observed for bistable physical systems experimen-
tally and theoretically [18,22,27]. Much attention
has also been paid to SR in sensory biology be-
cause neural systems have been shown to use SR
to detect very weak signals that are otherwise unde-
tectable [318,15,16,21,28]. According to Ref. [8],
the sensory mechanoreceptors of crayfish can detect a
very weak water movement of about 10 nm by adding
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noise. This surprising experimental result shed light
on the possible beneficial role of noise in biological
sensory systems.

In the majority of studies on SR, white noise without
any time correlation has been used. With the increas-
ing popularity of fractal theory [17], the existence of
“colored noise” with a 1/fβ type power spectrum has
been reported in many scientific areas. A question thus
arises as to whether 1/fβ noise can play any func-
tional role for SR. A partial answer was given by Kiss
et al. [13] by showing that 1/f noise (i.e., β ≈ 1)
could be used as additive noise for SR in a physical
system. However, how the color of noise (i.e., β) af-
fects the response of nonlinear systems showing SR
has, to our knowledge, never been reported.

In this Letter, we show that physical noise with a
1/fβ type power spectrum (0 6 β 6 2) can also in-
crease the response of a mathematical neuronal model
to subthreshold signals regardless of the value of β.
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Furthermore, we report a novel finding that the noise
intensity optimizing the response of this neuronal sys-
tem is the smallest when β ≈ 1.

Colored noise with a 1/fβ spectrum (β ≈ 1)
has been reported in the output of human nervous
control systems including the autonomic nervous
system [11,29,30] and the motor nervous sys-
tem [2,23,24]. In spite of the possibility that 1/f
noise might be needed in healthy physiological control
systems [11], however, the functional significance of
1/f noise has not been fully elucidated. The results
shown here might provide a novel explanation for
why 1/f noise would be desirable for physiological
control systems.

2. SR in neuronal model driven by colored noise

We consider a FitzHugh1Nagumo neuronal model
(FHN model) with an aperiodic input signal added by
stochastic noise,

εv̇ = v(v− a)(1− v)− w+AT − B + S(t) + ξ(t),
(1)

ẇ = v − w− b, (2)

where v(t) is a “fast” variable representing the mem-
brane voltage of the neuron, w(t) is a “slow” (recov-
ery) variable, and ε = 0.005, a = 0.5, b = 0.15. The
time constant ε determines the speed of the firing
process, and the value of 0.005 is a commonly used
one [3,4,16]. The AT is a critical value (≈ 0.11)
which makes the neuron fire periodically. The source
term S(t) is an aperiodic subthreshold signal with zero
mean, and B is the distance between the mean signal
level and AT . The quantity ξ(t) represents Gaussian
1/fβ noise (0 6 β 6 2) with zero mean and variance
σ2. When β is equal to 0, ξ(t) reduces to the Gaus-
sian white noise frequently used in SR studies. The
system is the same as that used in Refs. [3,4] except
for the use of 1/fβ noise.

The above system was integrated numerically using
the fourth-order Runge1Kutta method (Dt = 0.005 s,
total time 81.92 s, total number of data (N) = 214).
The 1/fβ noise was generated by the following pro-
cedures [12,25]. The discrete version of ξ(t) can be
expressed by a Fourier series,

ξ(iDt) =
N/2∑
k=1

Ak cos(2πik/N + θk), (3)

where θk is a random phase. The coefficient Ak is
related to the power spectrum for wave number k by

P(k) = A2
k/N. (4)

We first generated the power spectrum of ξ(t) with
the power-law dependence

P(k) = k−β. (5)

Next, by combining Eqs. (4) and (5), the values of
Ak were obtained by setting θk in Eq. (3) from a
uniform random distribution on the interval (0, 2π).
Finally, the 1/fβ noise was derived using Eq. (3)
before being transformed to have zero mean and pre-
determined variance (σ2). Note that the physical 1/fβ

noise obtained by these procedures is stationary with
the upper and the lower limit of frequency (in our
case, 1/NDt11/2Dt (i.e., 0.0121100) Hz).

The aperiodic signal S(t) was obtained by convolv-
ing the Gaussian white noise with the Hanning win-
dow (window width 6 s). To evaluate the coherence
between input and output signals, the cross power and
the cross correlation measures were used as follows,

C0 = S(t)R(t), (6)

C1 =
C0

[S2(t)]1/2{[R(t)− R(t)]2}1/2
, (7)

where R(t) is the mean firing rate of the neuron con-
structed by applying the unit-area symmetric Hanning
window (window width 6 s) to the impulse train of
action potentials (an action potential is defined as an
event when v(t) crosses 0.5 with positive slope), and
the overbar denotes an average over time. In the origi-
nal SR concept based on the power spectrum of output
signals, C0 corresponds to the cross power between
input and output signals. C1 is related to the signal
to noise ratio. Note that C1 is not proportional to the
signal to noise ratio; however, there is an interrelation
between them which can be characterized by a mono-
tonic function.

Fig. 1 shows ensemble-averaged values for C0 and
C1 (500 trials) with different levels of the noise vari-
ance σ2 with β = 0, 1, and 2. Not only for white
noise but also for 1/f noise and 1/f2 noise, there are
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Fig. 1. Ensemble-averaged values and the standard errors for C0

and C1 (500 trials) in the FHN model with different levels of noise
variance σ2 (white noise: open circles, 1/f noise: filled circles,
1/f2 noise: squares). The variance of S(t) was 5.0× 10−5 and
the signal to threshold distance B was 0.07. The solid line is the
theoretical prediction for white noise by Ref. [3]. The broken line
is a modified version of the theoretical curve for 1/f noise (see
text).

typical characteristics of SR with an optimal intensity
of noise maximizing the coherence between S(t) and
R(t). The SR-type behavior was also observed when
other values for β, B and S(t)2 were used (data not
shown). The result that SR is observed for 1/f noise
is not unexpected because it has already been reported
in the Schmidt trigger [13] and in a nondynamical
threshold system [9]. What is considered novel here is
that the optimal noise intensity for 1/f noise is much
smaller than that for white noise, and maximal values
for 〈C0〉 and 〈C1〉 are similar for the types of noise.
For 1/f2 noise, however, these values are consistently
smaller for the entire range of noise intensity.

The dependence of 〈C0〉 and 〈C1〉 on β is shown
in Fig. 2. The values for S(t)2 and B are the same

Fig. 2. Ensemble-averaged values and the standard errors for C0

and C1 (500 trials) in the FHN model with different levels of β.
The values for S(t)2 and B are the same as those used in Fig. 1.
When σ2 is sufficiently small, the values for 〈C0〉 and 〈C1〉 are
maximal when β ≈ 1.

as in Fig. 1. When the variance of noise is small
(σ2 = (0.711.0)× 10−4), the values for 〈C0〉 and
〈C1〉 are maximal when β ≈ 1. This tendency was
observed when different values for S(t)2 and B were
used (data not shown). The level of noise required for
the FHN model to detect the subthreshold signal is the
smallest when 1/f noise is added to the system. On
the contrary, as the noise intensity becomes larger, the
superiority of 1/f noise is diminished, and, finally,
the values for 〈C0〉 and 〈C1〉 are the greatest when
β ≈ 0 (see the case of σ2 = 8.0× 10−4 in Fig. 2).

3. Firing rate of FHN model driven by 1/fβ noise

The FHN model has the two steady states, i.e., rest-
ing and firing states. When the value of ε in Eq. (1)
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is sufficiently small, the change of v(t) is much faster
than that of w(t). In this case, the FHN model can
be regarded as a bistable system with the fourth-order
potential function (one stable state corresponds to the
resting state and the other to the firing state). The de-
gree to which the output of the system is coherent with
the input (evaluated by C0 and/or C1) is related to
the instantaneous firing rate (〈R(t)〉) and therefore
considered to be governed by the classical theory of
Kramers on the escape rate from a potential well [14],

〈R(t)〉 ∝ exp(−εU/D), (8)

where U corresponds to the height of the potential
barrier of the FHN model and 2D is the coefficient
of the autocorrelation function for white noise in
〈ξ(t)ξ(s)〉 = 2Dδ(t− s) (〈. . .〉 represents the en-
semble average). In the discrete case, the value of 2D
relates to the variance of ξ(t) as 2D = 〈ξ(t)2〉 × Dt.

When the time-varying behavior of S(t) is suffi-
ciently slower than the characteristic time of the FHN
model, U (as a function of time) can be represented
as a function of B and S(t). In Ref. [3], the theo-
retical curve of 〈C0〉 for white noise was given, when
[S(t)2]1/2 � B, as

〈C0〉 ∝ [S(t)2/D] exp(−
√

3B3ε/D). (9)

It follows that the optimal noise intensity where 〈C0〉
takes the maximal value is 2D = 2

√
3B3ε. The theo-

retical curve for white noise shown in Fig. 1 (solid
line) agrees well with our numerical results.

The above scenario holds true only when β = 0.
When ξ(t) has time-correlation, the applicability of
Eq. (8) cannot be guaranteed. Thus, we investigate
the relationship between 〈R(t)〉 and D numerically.
Eqs. (1) and (2) were integrated without input sig-
nals, i.e., by holding U constant. The value of B was
the same as Fig. 1.

As shown in Fig. 3, a linear relationship between
log〈R(t)〉 and 1/D is observed regardless of the value
of β. This means that the same type of relationship
as Eq. (8) is observed when β > 0 (this does not
mean that the Kramers theory holds true whenβ > 0).
However, since the slopes of these lines are different
from each other, we tentatively modify Eq. (8) to

〈R(t)〉 ∝ exp[−(εU/α)/D], (10)

Fig. 3. Relationships between log〈R(t)〉 and 1/D in the FHN
model. Regardless of the value of β, linear relationships are ob-
served. Each plot is an ensemble-averaged value (500 trials). Note
that the slope (1/α) is smallest when β = 1.

where 1/α represents the ratio of the slopes to that
for white noise. The slope of the lines is most gradual
when β ≈ 1, and for 1/f noise, the value of α was
calculated to be approximately 7.04 by a least squares
regression.

Eq. (10) is obtained simply by replacing D in
Eq. (8) by αD. Thus, if Eq. (10) can be used in
an approximate sense, we can obtain another equa-
tion similar to Eq. (9) by replacing D by αD. The
broken line for 1/f noise in Fig. 1 was drawn in this
way by setting α = 7.04, and is also in accord with
the numerical results. It follows that the optimal noise
intensity for SR is dependent on the value of α as
2D = 2

√
3B3ε/α. In other words, the larger the value

of α, the smaller the optimal noise intensity.

4. SR in nondynamical system driven by colored
noise

We next ask whether the superiority of 1/f noise
for SR in the FHN model could be caused either by
the property of 1/fβ noise itself or the interaction
between the noise property and the dynamics of the
FHN model. For this purpose, we consider SR in a
nondynamical system which has recently been shown
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with 1/f noise theoretically and experimentally [9].
The system adopted in the previous study [9] was a
very simple nondynamical threshold system: When the
signal plus noise crossed a threshold unidirectionally,
a single narrow pulse was generated. We now study
whether 1/fβ noise with β ≈ 1 could induce SR with
weaker noise intensity in a nondynamical system. If
so, it would be possible to conclude that the superiority
of 1/f noise for SR seen in the FHN model might be
due to the noise property.

Fig. 4 shows 〈C0〉 and 〈C1〉, obtained by the same
procedures as those for the FHN model, as a function
of the variance of noise (S(t)2 = 1.0× 10−5, thresh-
old value 0.03). The maximal values for 〈C0〉 and 〈C1〉
are the largest when β = 0, and the optimal noise level
for β = 0, 1, and 2 do not seem to be much differ-
ent. These results clearly indicate that the superiority
of 1/f noise is not seen in this nondynamical system.
The reason can be explained analytically as follows.

The firing frequency (〈R(t)〉) of the nondynamical
system driven by stochastic noise is equivalent to the
frequency at which the noise crosses a certain level
and therefore is given by Rice’s formula [26],

〈R(t)〉 ∝ 1√
σ2

( fh∫
fl

f2P(f) df

)1/2

× exp

(
− θ2

2σ2

)
, (11)

where σ2 is the variance of noise, P(f) is the power
spectrum of 1/fβ noise,fl andfh are lower and higher
cutoff frequencies, respectively, and θ is a threshold
value.

The variance of the noise is represented by
the power spectrum as σ2 ∼

∫ fh
fl
P(f)df and

P(f) ∝ f−β. Thus, we obtain

〈R(t)〉 ∝

√√√√∫ fhfl f−β+2df∫ fh
fl
f−βdf

exp

(
− θ2

2σ2

)
. (12)

When a subthreshold aperiodic signal S(t) is added
to the nondynamical system, the signal to threshold
distance is modulated as (θ − S(t)). Therefore, when
[S(t)2]1/2 � θ, Eq. (12) can be rewritten as

Fig. 4. Ensemble-averaged values and the standard errors for C0

and C1 (500 trials) in the nondynamical threshold system with
different levels of noise variance σ2 (white noise: open circles,
1/f noise: filled circles, 1/f2 noise: squares). The variance of
S(t) was 1.0× 10−5 and the threshold value was 0.03. Both
〈C0〉 and 〈C1〉 for 1/f noise and 1/f2 noise are lower than those
for white noise. Note that the optimal noise levels for 〈C0〉 are
approximately the same among three types of noise. The solid
lines are the theoretical curves given by Eq. (15).

〈R(t)〉 ∝ g(β) exp{−[θ− S(t)]2/2σ2}
∼ g(β) exp{−[θ2 − 2θS(t)]/2σ2}, (13)

where g(β) = (
∫ fh
fl
f−β+2df/

∫ fh
fl
f−βdf)1/2. Be-

cause S(t) is a deterministic signal, the ensemble-
averaged value for C0 is calculated by

〈C0〉 = 〈S(t)R(t)〉 = S(t)〈R(t)〉. (14)

Substituting Eq. (13) into Eq. (14) and expanding to
linear order gives

〈C0〉 ∝
g(β)θS(t)2

σ2
exp

(
− θ2

2σ2

)
. (15)
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The solid lines in Fig. 4 are the theoretical curves for
〈C0〉, where only the amplitude for β = 0 has been
adjusted to fit the data, and the amplitudes for β = 1
and 2 have been scaled by factors of g(1)/g(0) and
g(2)/g(0), respectively. These theoretical curves are
well in accordance with the numerical results. From
Eq. (15), the optimal noise level maximizing 〈C0〉
can be calculated to be θ2/2 (0.032/2 = 4.5× 10−4)
which is independent of the value ofβ. As the maximal
〈C0〉 is observed at around this level of noise (Fig. 4),
this prediction is also confirmed.

These results indicate that the characteristics of SR
obtained in the FHN model in this study do not hold
true for the nondynamical system. Therefore, the su-
periority of 1/f noise for the FHN model is not due to
the property of noise itself. The results for the nondy-
namical system clearly show that the interaction be-
tween the noise property and the dynamics of the FHN
model is significant.

5. Conclusions and implications

This study demonstrates that 1/f noise is more suit-
able for SR in the FHN neuronal model (Eqs. (1) and
(2)) than conventional white noise, because an even
weaker noise intensity is sufficient for the neuron to
detect the subthreshold signals. In an actual system the
noise is not a sum of delta-functions in a mathemati-
cal sense, but it has width and amplitude. So our re-
sult means that smaller amplitude noise is sufficient to
maximize SR when it has a 1/f type power spectrum.

In this Letter, we only examined the responsible
mechanism, i.e., the superiority of 1/f noise caused
by the interaction between the noise property and the
dynamics of the FHN model, by comparing the an-
alytical result of the nondynamical threshold system.
Further theoretical studies on the mechanism(s) of
enhanced SR by 1/f noise in the FHN model are
needed. Especially, it is considered to be important to
study analytically whether Eq. (10) holds true in a
strict sense or in an approximate sense.

The concept of SR has recently received at-
tention in the biological and physiological sci-
ences [8,517,10,15,20]. On the other hand, although
1/f noise is commonly observed in physiological
control systems [2,11,23,24,29,30], its functional
significance has not been fully elucidated. Our results

lead to the interesting hypothesis that intrinsic 1/f
noise might be operative in a system showing SR.
For example, considering our recent finding that 1/f
noise-like modulation from the supraspinal centers
is added to the human stretch-reflex system [24],
the 1/f noise intrinsic to the human motor nervous
system might play a significant role in detecting in-
put proprioceptive signals and controlling the reflex
motor nervous system outflow.
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