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Abstract— We present a successful application of a soft
computing approach based on the multivariate empirical mode
decomposition (MEMD) method to EEG epileptic seizures sepa-
ration. The results of the automatic multivatiate intrinsic mode
functions (IMF) clustering allowed us to separate the seizure
related spikes and sharp waves. The results of the proposed
method have been compared with classical blind separation
approach based on ICA, which failed to identify the non–linear
and non–stationary signals related to the brain seizures. The
proposed method supports epileptic seizure diagnostic methods.

I. INTRODUCTION

The epileptic seizure automatic identification and fur-
ther brain localization are hot topics in neurotechnology
research [1]. In this paper we report an application of MEMD
data–driven technique to the seizures separation. We test our
approach on a public domain epileptic seizures dataset [2]
available from the Warsaw University, Poland [1].

There exist several signal processing methods focusing on
the removal of non–brain related electrophysiological signals
(e.g. eye– or muscle–movement interferences). In recent
years successful developments has been reported, which are
based on empirical mode decomposition (EMD) [3] and on
its multivariate extension [4]. Those methods outperform the
ICA and blind source separation based approaches [5].

The classical EMD [6] concept constitutes an univariate
fully data adaptive technique to decompose any non–linear
or non–stationery signal into a finite set of band-limited
basis functions called intrinsic mode functions (IMFs). The
recently proposed MEMD [7] method, which is a multivari-
ate extension of the above concept, allows for simultaneous
data–driven decomposition of multichannel complex signals
such as EEG.

In this paper we introduce a MEMD based epileptic
seizures separation method which allows for automatic iden-
tification of those oscillation. The soft computing diagnostic
approach is based on Hilbert–domain amplitude ridges hier-
archical clustering.

The paper is organized as follows. In the next section we
introduce the MEMD approach with example of EOG and
alpha–wave separation. Next we present an application of
the proposed technique to EEG with seizures. Discussion of
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Fig. 1. An example of successful automatic EEG decomposition using
MEMD approach with amplitude and frequency ridges clustering as in [8].
The top panel presents time series and Fourier power spectrum of the eye–
movements (eye–rolling) contaminated fourth channels EEG. The subject
closed his eyes at the 0 seconds time stamp. The second from the top panel
presents the separated from aplha–wave and from the eye-movements EEG.
The second from the bottom panel presents the alpha–frequency EEG with
visible amplitude increase after the eye closing at 0 s. The bottom panel
presents the isolated eye–movement artifacts.

the results with comparison of classical methods concludes
the paper.

II. METHODS

The very recent development in the field is the MEMD [7],
which is a more generalized extension of the classical unive-
riate EMD, created a possibility to instantaneously process
the multivariate signals such as EEG. The major novelty
proposed in [7] is based on a possibility to process n-
dimensional signals in the same number of spaces. This al-
lows at each decomposition step the to generate the multiple
n-dimensional envelopes by taking signal projections along
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different directions in n-dimensional spaces. The concept
was very elegantly resolved by authors in [7] by utilizing
a sampling concept based on low discrepancy Hammersley
sequence to generate projections of the n-dimensional input
signal due to a lack of formal definition of maxima and
minima in multidimensional domains. As the result, the
MEMD decomposition procedure of an input multivariate
signal s(t) into a multidimensional set of IMFs could be
outlined as follows,

1) First, generate the point-set based on a Hammersley
sequence in order to obtain an uniform sampling of
the input multivariate signal on the (n−1) dimensional
sphere;

2) Next, compute the projection {pθk(t)}Tt=1 of the signal
{s(t)}Tt=1 along the direction vector Xθk , for all k (the
complete set of direction vectors) which will result in
{pθk(t)}Kk=1 projection set;

3) After that, find the samples {tθki }Kk=1 with the maxima
in the projected signals set {pθk(t)}Kk=1;

4) In the following step, perform an interpolation
[tθki , s(tθki )], for all values of k, for the resulting
multivariate envelope curves {vθk(t)}Kk=1;

5) Next, for the set of k direction vectors, compute a mean
m(t) of the previously obtained envelope curves as,

m(t) =
1

k

K∑
k=1

vθk(t) (1)

6) Finally, extract (“sift” - as it is commonly referred
in EMD–comminity) the “detail” d(t) using d(t) =
X(t) −m(t). Comparably as in the univariate EMD,
the detail d(t) shall fulfill the stoppage criterion for
a multivariate IMF, thus apply the above procedure to
X(t)− d(t), otherwise apply it only to d(t).

Once the first multivariate IMF is identified, it is subtracted
from the input signal and the process is applied again
yielding the next one. In the multivariate case, similarly
as in univariate, the residue corresponds to the signal of
which projections do not have enough extrema to form the
multivariate envelope. Also the stopping criterion in MEMD
is similar to univariate EMD [6]. The only difference is that
the condition for equality of the number of extrema and zero
crossings is omitted since the extrema for the multivariate
signals are not properly defined.

Resulting from the MEMD decomposition application
filter banks act as an array of band–pass filters (possibly with
overlapping bands). The interesting part of MEMD technique
is, that the frequency bands are the same for all the IMFs. In
case of the sequential implementation of classical univariate
EMD units, each signal would be decomposed into different
number of IMFs with various (data–driven) frequency bands.

A. Hilbert-Spectral Clustering of EMD Components

In order to identify the IMFs carrying similar EEG patterns
in multivariate data we cast them separately to Hilbert spectra
domain in order to capture the detailed content (intrinsic
frequency and amplitude tracks/ridges). The amplitude ridge

traces of all IMFs (note that adaptive nature of MEMD
results in the same number of IMFs in each channel) are
combined together and correlated.

For each IMF separately the corresponding time–
frequency representation can be produced by applying the
Hilbert–transform [6]. The Hilbert transform allows us to
observe the variable amplitude and the instantaneous fre-
quency in a form of very sharp and localized functions
of frequency and time (in contrast to Fourier expansion,
for example, where frequencies and amplitudes are fixed
for their bases). This approach is fits the analysis of non–
stationary and non–linear EEG. It allows for modeling of the
synchronized activities within the identified channels.

Using the above procedure the EEG components from
various electrodes could be grouped separately, thus form-
ing subsets of IMFs, from which common time–frequency
patterns can be identified. To this end, use the zero–lag
correlations coefficients of Hilbert amplitude only traces
(a simplified approach comparing to the one in [8]) as “a
distance measure” in order to capture spectral similarity
across the IMFs. Once the correlation procedure is performed
for all IMFs in Hilbert domain a hierarchical cluster analysis
using a set of dissimilarities for the n objects is performed [9]
for amplitude ridges only. Initially, each vector representing
time series of amplitude ridges values is assigned to its
own cluster and then the algorithm proceeds iteratively,
at each stage joining the two most similar clusters. This
procedure continues until a single cluster remains. At each
stage distances between clusters are recalculated by the
Lance–Williams update formula of dissimilarity with a single
linkage clustering method. This method adopts a “friends of
friends” strategy for clustering [9].

A result of such procedure is presented in Figure 1 where
three separate EEG activities have been identified and sepa-
rated. The example EEG signal was recorded from a subject
rolling (moving) his eyes while keeping them open for 5
seconds and next closed for the same amount of time. The
MEMD application supported with hierarchical clustering
allowed us to identify the eye–movements depicted in the
bottom panel of Figure 1, alpha–wave and the remaining
EEG as visualized in the middle panels of that figure.

B. MEMD Application to EEG Epilepsy Dataset

The MEMD method supported with Hilbert domain ampli-
tude ridges clustering method has been applied to separation
and identification of epileptic seizures data provided by the
University of Warsaw, Poland [1], [2]. The CHIMIC dataset
has been chosen for evaluations, which was a recording
from a nine years old male with temporal lobe epileptic
seizures with a simple partial onset (epigastric sensations).
The subject’s seizures were evolving to partially complex
(motor automatisms) with or without a secondary general-
ization. None of the anti–epileptic–drugs were effective, thus
a surgical intervention was determined. EEG examination
revealed generalizing sharp waves, spikes, and some focal
slow waves.
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Fig. 2. The result of the proposed application of MEMD decomposition
with spectral Hilbert–domain amplitude ridges clustering. The top panel
(original recording) presents the original EEG data recording. The epileptic
seizure with sharp waves and spikes is visible there in the range of
301 − 303.5 s (the original time course of the CHIMIC dataset) [1],
[2]. The second from the top panel (separated EEG with seizure) presents
the separated epileptic oscillations with the proposed method. The second
from the bottom panel (“seizure free” EEG) depicts the remaining separate
EEG activity, while the bottom graph (amplifier drift) represents the low
frequency drift registered by the bio–amplifier.

The EEG signals were recoded with DigiTrack EEG
System using 10 mm Ag/AgCl electrodes with a reference
placed at Fpz. Sampling frequency was set at 250 Hz;
hardware filters for a pass-band of 0.5− 70 Hz; notch filter
set at 50 Hz.

For the evaluation purpose of the proposed method we
chose a subset of 16 EEG channels as follows F7, F3, Fz,
F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, and T6 in order to
uniformly sample the human scalp and to reduce the MEMD
method computational load, which could be significant for
high dimensional signals [7]. The EEG signals were further
stop–band filtered with a third order Butterworth filter to
remove the remaining, after the original notch filter, electrical
power inferences in a range of 48 − 52 Hz. A result of the
epileptic seizures separation is presented in Figure 2 and
discussed in the next section.

(a)

(b)

Fig. 3. EEG LCMV beamforming [10] projected on a model head result
of the original EEG in (a) and the processed with the proposed method in
(b) panels respectively. The original EEG source localization is in the right
frontal, while the proposed method localized the epileptic center in the right
temporal hemisphere, which agrees with the localization originally reported
in [1].

III. RESULTS

As a result of the proposed MEMD based EEG decompo-
sition it was possible to cluster the multivariate IMF com-
ponents into those related to epileptic seizures, the remming
EEG and the low frequency drifts as depicted in the lower
panels of Figure 2 respectively. The resulting, separated with
amplitude ridges hierarchical clustering, epileptic spikes has
been clearly identified and enhanced in the all analyzed
channels. The remaining “seizure free” cleaned EEG and
the low frequency drifts did not contain any remains of the
epileptic oscillations.
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Fig. 4. The result of ICA blind separation method applied to the EEG data
resulting with unsuccessful outcome. The top panel presents to original EEG
16 channels with epileptic seizure in the range of 301−303.5 s (the original
time course of the CHIMIC dataset) [1], [2]. None of the independent
components (IC) resulted with a separated seizure activity (compare with
the proposed MEMD based approach presented in Figure 2.

EEG LCMV beamforming [10] based source localization
is presented in Figure 3 where the original and MEMD pro-
cessed epileptic centers are depicted. The proposed method
allows for correct localization as compare with originally
reported in [1].

For a comparison with the classical methods usually
applied in EEG community we tested ICA based technique
which failed to identify the epileptic oscillations as shown
in Figure 4. Non of the ICA resulting components had a
separated oscillation as clearly obtained with the proposed
method in Figure 2.

IV. CONCLUSIONS
A framework to separate and enhance the components

carrying the epileptic seizure activities within multichannel
EEG recordings has been presented. This has been achieved
by applying an EEG decomposition technique, which allows
a flexible sub-band multivaiare signal decomposition while
preserving the non–linear and non–stationary features of
the signals which is fundamental for epileptic brain activity
analysis. The so obtained components from each EEG chan-
nel processed simultaneously by MEMD have been further
transformed to the Hilbert domain and compared within
amplitude domain using the clustering technique in order
to identify those similar (correlated) across channels.

The resulting reconstruction has allowed us to separate
common epilepsy related interferences from underlying brain
activity in the data–driven signal processing approach with-
out information leakage between channels.

This is a step forward in EEG signal processing applica-
tions which could be useful for creating new soft computing
and date driven diagnostic methods.
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