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Critical Scale Invariance in a Healthy Human Heart Rate
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We demonstrate the robust scale-invariance in the probability density function (PDF) of detrended
healthy human heart rate increments, which is preserved not only in a quiescent condition, but also in a
dynamic state where the mean level of the heart rate is dramatically changing. This scale-independent
and fractal structure is markedly different from the scale-dependent PDF evolution observed in a
turbulentlike, cascade heart rate model. These results strongly support the view that a healthy human
heart rate is controlled to converge continually to a critical state.
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A healthy human heart rate belongs to a special class
of complex signals, showing long-range temporal corre-
lations [1,2], non-Gaussianity of the increment’s proba-
bility density function (PDF) [1] and multifractal scaling
properties [3,4] and has served as the ‘‘benchmark’’ of
choice for studies of biological complexity. Two alterna-
tive mechanisms, both characterized by these three fea-
tures, have been proposed for this heart rate complexity:
(i) a random (multiplicative) cascade process based on the
resemblance of the behavior of the structure function [5]
of heart rate increments to that of spatial velocity differ-
ences in hydrodynamic turbulence [6] and (ii) critical
statelike dynamics [7] based on the resemblance of the
scale-invariant properties in heart rate to those of many
systems operating near the critical point of their phase
space. To date the exact mechanism for the complex heart
rate dynamics is unknown. However, as it reflects the
dynamics of the autonomic nervous system’s control of
heart rate [1,4] and thus provides potential predictors for
the mortality of cardiac patients [8–10], elucidating this
mechanism is considered important.

Lin and Hughson [6] recently reported an analogy
between turbulence and human heart rate dynamics by
finding a similarity of the structure function—directly
linked with the multifractal formalism [11]—of heart
rate increments to that of spatial velocity differences in a
random cascade process proposed as a model of hydro-
dynamic turbulence. One of the common features of such
cascade-type multifractal models is the evolution in the
shape of the PDF of the increments from Gaussian at large
scales to stretched exponential at smaller scales [12]. In
this study, we disprove this cascadelike assertion and
demonstrate that heart rate signals do not follow the
evolution in the shape of the (increment) PDF character-
istic for cascadelike processes, but report for the first time
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a robust scale invariance. As long-range correlation, non-
Gaussianity, and multifractality are also typical charac-
teristics of a system at the critical point [13,14], and
fluctuations in a system at a critical point are generally
associated with the scale invariance and universal behav-
ior of the scaling function [15,16], we conclude that such
robust scale invariance in the increment PDF suggests the
alternative scenario of the near critical statelike operation
for the healthy heart rate dynamics.

The long-term heart rate data analyzed have been
measured as sequential heart interbeat intervals b�i�,
where i is the beat number. We investigate the PDF of
heart rate increments at different time scales (in beat
numbers), where the nonstationarity of the data has
been eliminated by local detrending [1]. We first integrate
the b�i�, B�m� �

Pm
j�1 b�j�, and the resultant B�m� is

divided into sliding segments of size 2s. Then in each
segment the best qth order polynomial is fit to the data.
The differences �sB�i� � B��i� s� � B��i� at a scale s
are obtained by sliding in time over the segments, where
B��i� is a deviation from the polynomial fit. By this
procedure, the �q� 1�th order polynomial trends are
eliminated and we analyze the whole PDF of �sB�i�.

Using this method, we analyze two experimental and
two computer-generated data sets. The first data set con-
sists of daytime (12:00–18:00 h) heart rate data with a
length of up to 4� 104 heartbeats from 50 healthy sub-
jects (10 females and 40 males; ages 21–76 years) without
any known disease affecting the autonomic control of
heart rate [Fig. 1(a)]. Details of the recruitment of the
subjects, screening for medical problems, protocols, and
the data collection are described in Sakata et al. [18]. The
data were collected during normal daily life. The second
experimental data set consists of data of seven 26-h-long
periods (up to 105 beats), collected when the subjects
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FIG. 1. (a) A representative record of daytime (12:00–
18:00 h) heart interbeat intervals for a healthy subject.
(b) An example of heartbeat intervals for a healthy subject
during constant routine protocol [4,17]. (c) The surrogate data
for (b). (d) Data generated by a cascade heart rate increment
model [6]. The parameters used for the simulation are J � 15,
Rt � 2, and �j � R�2:5�j=J

t (see Ref. [6] for details).
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(7 males; ages 21–30 years) underwent ‘‘constant rou-
tine’’ (CR) protocol, where known behavioral factors
affecting heart rate (e.g., exercise, diet, postural changes,
and sleep) are eliminated [Fig. 1(b)] [4,17].

In order to test the possible presence of nonlinear
mechanisms in complex heart rate dynamics, we apply
the surrogate data test to the CR protocol data [19]. We
generate a surrogate data set with the same Fourier am-
plitudes and distributions as the original increments in
the CR protocol data [Fig. 1(c)]. Since only linear tem-
poral correlation of b�i� 1� � b�i� is retained in the
surrogate data, a comparison with the raw data can be
used to test whether the PDF of ‘‘velocity’’ increments
�sB�i� possesses some nonlinear mechanism inherent to
it. Finally, we generate heart rate increments of compa-
rable lengths, following the ‘‘turbulencelike’’ scenario
from the random cascade model proposed recently by
Lin and Hughson [Fig. 1(d)] [6].

PDF’s of �sB�i� for healthy humans, which are stand-
ardized by dividing the heart rate increments in each
record by the standard deviation, are non-Gaussian in
shape for a wide range of scales 8 � s � 4096 irrespec-
178103-2
tive of whether the subjects were in their normal daily
routine [Fig. 2(a)] or in CR [Fig. 2(b)]. In contrast, the
PDF’s of the surrogate data are near Gaussian, although
non-Gaussianity with the fat tails close to those in the
observed data is still encountered at fine scales [Fig. 2(c)].
The difference between the healthy human and surrogate
data indicates that the observed non-Gaussian behavior is
related to nonlinear features of the healthy heart rate
dynamics. The PDF’s of the cascade model show continu-
ous deformation and the appearance of fat tails when
going from large to small scales [Fig. 2(d)].

For a quantitative comparison, we fit the data to the
following function based on Castaing’s equation [12]:

~Ps�x� �
Z

PL

�
x
�

�
1

�
Gs;L�ln��d�ln��;

where PL is the increment PDF at a large scale L > s, and
the self-similarity kernel Gs;L determines the nature of
the cascade-type multiplicative process. Here we assume
PL and Gs;L are both Gaussian,

Gs;L�ln�� �
1�������
2�

p
�
exp

�
�
ln2�

2�2

�
;

and investigate the scale dependence of �2. The fit of the
PDF of actual heart rate increments to Castaing’s equa-
tion is indeed almost perfect, especially within 
3 times
standard deviation, even for a single record [Fig. 3(a)],
and robust in terms of the effect of the order of detrending
polynomials on the estimation of �2, if the order is greater
than 2 [Fig. 3(b)]. In the following, we use the third order
detrending for the estimation of �2.

Within the turbulent cascade picture, the parameter �2

can be interpreted as being proportional to the number of
cascade steps and is known to decrease linearly with logs
[12,20]. The cascade heart rate model studied here [6]
also shows this effect [Fig. 3(c)]. In contrast, the scale
dependency of �2 for healthy heart rate increments is
remarkably different [Fig. 3(c)]. Especially during CR,
we cannot see any decrease in �2 with logs. There is no
significant difference in the average �2 at different scales,
tested by the analysis of variance, over the range of 23–
2048 beats for healthy subjects during daily routine and
8–4096 beats during CR [F�13 686� � 1:73 and
F�18 114� � 1:70, respectively, p > 0:05], and the slopes
of �2 vs logs are much closer to zero, which means the
absence of cascade steps across the scales in the corre-
sponding range.

In addition, when the PDF’s at different scales are
superimposed [Fig. 3(d)], all the data collapse on the
same curve, which is one of the characteristic features
observed in fluctuations at a critical point [21]. The range
of scales where this scale invariance of PDF is observed,
spanning from about ten beats to a few thousand heart-
beats, is compatible with that of the robust, behavioral-
independent 1=f scaling [17] and multifractality [4] of
heart rate. The scale invariance in the PDF is also robust
178103-2



FIG. 2 (color). Deformation of increment PDF’s across scales. Standardized PDF’s (in logarithmic scale) of �sB�i� for different
time scales are shown for (from top to bottom) s � 8, 16, 32, 64, 128, 256, 512, and 1024 beats. These PDF’s are estimated from all
samples in each group. The dashed line is a Gaussian PDF for comparison. (a) The PDF’s from daytime (12:00–18:00 h) heart rate
time series from healthy subjects. (b) From healthy subjects during constant routine protocol. (c) From surrogate time series for (b).
(d) From a cascade model. Note in the last case (d) the continuous deformation and the appearance of fat tails when going from
large to fine scales. In solid lines, we superimpose the deformation of the PDF using Castaing’s equation with the log-normal self-
similarity kernel, providing an excellent fit to the data.
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in the sense that it is observed not only during CR but also
during normal daily life, where behavioral modifiers of
heart rate dramatically change the mean level of heart
rate [e.g., Fig. 1(a)]. We thus find a novel property of scale
invariance in healthy human heart rate dynamics, remi-
niscent of systems in a critical state. In particular, the
invariance discovered strongly supports the view that the
178103-3
healthy human heart is controlled to converge continually
to a critical state. Such a critical point itself may, how-
ever, be shifted by the effects of the external and/or
internal environment.

Struzik et al. [22] recently demonstrated that modify-
ing the relative importance of either the sympathetic or
the parasympathetic branch of the autonomic nervous
FIG. 3 (color). (a) Standardized PDF
for a single subject during constant rou-
tine protocol [see Fig. 1(b)]. In solid
lines, we superimpose the PDF’s using
Castaing’s equation. (b) Dependence of
the fitting parameter �2 of Castaing’s
equation on the order of detrending pol-
ynomials. (c) Dependence of the fitting
parameter �2 on the scale s. The error
bars indicate the standard error of the
group averages. (d) Superposition of
standardized PDF’s at different scales
shown in Figs. 2(a) and 2(b), where we
use the scale range 8 � s � 2048 and
8 � s � 4096, respectively. In solid
lines, we superimpose the PDF using
the Castaing’s equation (�2 � 0:16 for
both groups).
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system leads to a substantial decrease in 1=f scaling,
showing that 1=f scaling in healthy heart rate requires
the existence of and the intricate balance between the
antagonistic activity of these two branches. They further
suggest the view of cardiac neuroregulation as a system
in a critical state [23], and permanently out of equilib-
rium, in which concerted interplay of the sympathetic
and parasympathetic nervous systems is required for
preserving momentary ‘‘balance.’’ Our findings provide
more direct evidence for this. The precise mechanism
responsible for critical heart rate dynamics requires
further research. It is of note, however, that there exists
a physiological model for the dynamics of cardiac neuro-
regulation [24], equipped with antagonistic and multi-
plicative delayed feedback loops, within time scales
where the critical scale invariance in heart rate is ob-
served. The mechanism of the critical mode of opera-
tion could be clarified by investigating essential dynam-
ics in such a ‘‘first principles,’’ nonlinear physiological
model.

The functional advantage of the heart rate control
system being in a critical state remains an open question.
However, an analogy with other critical phenomena
might help to understand this. Studies on transport prop-
erties through complex networks [25,26] have demon-
strated maximum efficiency of transportation at the
critical point, which is the phase transition point from
an ‘‘uncrowded’’ state to a ‘‘congested’’ state in the trans-
portation routes. Thus, our results may indicate that the
central neuroregulation continually brings the heart to a
critical state to maximize its functional ability, coping
with the continually changing preload and afterload on
the heart. This may be particularly important in under-
standing the widely reported evidence that decreased 1=f
variability [8,9], especially in the low frequency region
[8,10], is associated with increased mortality in cardiac
patients. To date there have been no successful attempts to
provide a satisfactory explanation for this. We suggest for
the first time that a breakdown of the optimal control
achieved in the critical state might be related to this
clinically important phenomenon.
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636 (2002).
178103-4


