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Effects of Colored Noise on Stochastic Resonance in Sensory Neurons
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Noise can assist neurons in the detection of weak signals via a mechanism known as stocha
resonance (SR). We demonstrate experimentally that SR-type effects can be obtained in rat sen
neurons with white noise,1yf noise, or1yf2 noise. For low-frequency input noise, we show that the
optimal noise intensity is the lowest and the output signal-to-noise ratio the highest for conventio
white noise. We also show that under certain circumstances,1yf noise can be better than white noise
for enhancing the response of a neuron to a weak signal. We present a theory to account for th
results and discuss the biological implications of1yf noise. [S0031-9007(99)08727-X]
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It has recently been recognized that noise can enha
the response of nonlinear systems to weak signals. W
this phenomenon, which is known as stochastic resona
(SR), the flow of information through a system is max
mized when the input noise intensity is set to a ce
tain value [1]. This concept is particularly interestin
for neurobiological systems, because SR may provide
mechanism for such systems to detect and process w
signals [2].

In the majority of SR studies, the additive noise i
spectrally flat (i.e., white) with either zero or wea
(short) time correlations. However, colored noise wit
a 1yfb power spectrum has been observed in ma
biological systems [3]. In several cases, the value
b was found to be nearly equal to1. Although there
are various mechanisms proposed for the origin of th
type of noise [4], its functional significance in biologica
systems remains unclear. A natural question arises
to whether1yfb noise can play a significant role in the
context of SR. In previous works, we have shown th
1yfb noise can induce SR in a FitzHugh-Nagumo (FHN
model neuron and that the optimal noise variance depe
on the value ofb [5,6].

In this Letter, we investigate whether or not1yfb noise
can be used for SR in anin vitro neuronal sensory system
and we examine how the value ofb affects the SR profile.
Specifically, we show that the spectral type of noise c
affect the peak value of the output signal-to-noise rat
(SNR) and the location of the optimal noise variance. W
also describe a theory, using the linearized FHN mod
introduced in Ref. [5], to account for these effects.

Studies were conducted on cutaneous afferents in
skin using the experimental setup (Fig. 1) from Ref. [7
A section of hairy skin was excised from the media
aspect of the upper thigh of a rat; its sensory innervatio
a branch of the saphenous nerve, was kept intact. W
recorded the occurrence times of the action potentials
the nerve while the patch was subjected to uniaxial stre
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stimuli using a linear actuator operated under positi
control. The stretch stimuli consisted of the sum of
sine wave (3 Hz) and noise of varying intensity an
spectral type. Three different types of noise were appli
white noise (b  0), 1yf noise (b  1), and1yf2 noise
(b  2) [8]. The actuator is limited to frequencies belo
approximately 80 Hz, and the noise bandwidth is taken
be 0.02–40 Hz. The duration of each stimulus trial w
at least 50 s and the intertrial time was 70 s.

For each neuron, we first confirmed that the nois
free sine wave was a subthreshold stimulus. Sign
with additive noise were then applied to the skin a
the resulting neuronal response was recorded. The o
of trials was randomized to mitigate adaptation effec

FIG. 1. Schematic diagram of the experimental setup.
5 mm 3 20 mm specimen of hairy skin from the hindlimb o
an adult rat, depilated using Nair, was removed with its sens
innervation, a branch of the saphenous nerve, intact. T
specimen was positioned in a Lucite chamber filled with gass
(95% O2, 5% CO2) rat interstitial fluid at room temperature
The skin was held by two 5-mm-wide clamps, through whi
the stretch stimuli were applied. One clamp was fixed wh
the other was coupled to a Ling 203 linear actuator via a line
variable differential transformer. The actuator was positi
controlled through a feedback system. Control signals w
generated on a computer. The nerve was positioned in
adjoining oil-filled chamber. Extracellular signals from th
nerve were recorded via fine gold-wire electrodes and amplifi
using a PAR113 preamplifier. Action potential respons
were discriminated using a template-matching algorithm (Sig
Processing Systems, Prospect, Australia) and their firing tim
were recorded.
© 1999 The American Physical Society
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By repeating the noise-free sine-wave input stimulus
regular intervals, we confirmed that the periodic inpu
to each neuron was maintained at a subthreshold le
throughout the course of the experiment [9]. Data we
obtained from 12 neurons from four different animals
Figure 2 shows a typical time series of the input stimu
and the resulting neuronal spike train. We calculate
the power spectral density (PSD) of each spike tra
and computed the output SNR as the ratio of the pe
amplitude of the PSD at 3 Hz (the input signal frequency
to the level of the background noise at that frequenc
(Fig. 2).

The SR profiles—output SNR versus input noise var
ances

2
N —for four neurons are shown in Fig. 3. For al

12 neurons tested, we observed a maximum in the o
put SNR curve for both conventional white noise and1yf
noise. For1yf2 noise, we found an increase in the out
put SNR with the addition of noise, but a clear peak i
the output SNR was not discernible, with the exception o
one neuron. For all 12 neurons tested, we also found th
the maximal output SNR value was larger and the co
responding noise level was smaller for white noise tha
for 1yf noise and1yf2 noise (see Fig. 3). However, as
shown for neurons #2–#4 in Fig. 3, there can be a ran
of noise variance for which the output SNR for1yf noise
is significantly larger than that for white noise of corre
sponding intensity. For1yf2 noise, the output SNR was
much smaller than that for white noise and1yf noise, re-
spectively, over the entire range of noise variances used

Although the optimal noise variance for1yf2 noise
is not shown in Fig. 3, the data suggest that it may b
located at a value larger than those shown in Fig.
Hence, as the value ofb increases, the optimal noise

FIG. 2. Typical time traces of the input periodic signal an
noise stimuli (1yf noise) and the corresponding spike train
from a sensory neuron. The PSD of the spike train is calculat
and the output SNR is computed as the ratio of the pe
amplitude of the PSD at the input signal frequency (marke
by the solid triangle on the frequency axis) to the level of th
background noise at that frequency.
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variance may shift to larger values. In previous work [
the optimal noise variance was shown to be independ
of the value of b in nondynamical systems, where
characteristic firing event is generated when the s
of noise and signal crosses a threshold value.
observation that the optimal noise variance varies withb

suggests a dynamical origin.
In Ref. [5], we derived the theoretical SR profile of th

cross-power measure between a slowly varying aperio
input signal and the output firing response of a lineariz
FHN model neuron. Here we extend the theory
estimate the effect ofb on the SR profile of the SNR
The linearized FHN model has dynamics represented
[5],

´ Ùy  2gy 2 w 1 A sins2pf0td 1 jstd , (1)

Ùw  y 2 w , (2)

wherey is a fast variable representing the neuron me
brane voltage,w is a slow variable,jstd is a noise term,
´ is a constant (́ ø 1), and the sinusoidal term repre
sents the weak input signal. In this system, the cubic te
in the original FHN model is approximated as2gy by
linearization at the fixed points. This model describ
only the subthreshold dynamics of the membrane volt
and does not have any mechanism for generating ac
potentials. Hence, we assume that the model generate
action potential whenevery increases past a thresholdu.
Both y and w, respectively, are then reset to some ar
trary values. This reset event leads to a refractory pe
of durationTR.

Since the linearized FHN model has essentially lin
dynamics, one can easily calculate the frequency resp
functionxyjsvd. When the input is taken to bejstd (with

FIG. 3. Plots of output SNR versus input noise variances
2
N

for white noise,1yf noise, and1yf2 noise, as measured fo
four different neurons. The noise variances

2
N is presented in

units of the squared amplitudeA2 of the input sine wave. Trials
with 1yf2 noise were not conducted for neuron #4. Solid lin
are drawn to guide the eye.
2403
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no periodic input signal, i.e.,A  0) and the output is
taken to bey, then

jxyjsvdj2


sv2 1 1d2

fgsv2 1 1d 1 1g2 1 v2f´sv2 1 1d 2 1g2 , (3)

where v  2pf. This function is used to derive the
following expression for the zero-input firing rateR0:

R0  2r0ys1 1 2TRr0d , (4)

wherer0 represents the frequency thaty crossesu, when
the resetting events are not considered [5]. The rater0 is
obtained from Rice’s theory [10] as

r0  gsbd exph2u2yf2hsbds2
N gj , (5)

where gsbd  s
Rfh

fl
f2b12jxyjsvdj2 dfy

Rfh

fl
f2b 3

jxyjsvdj2 dfd1y2 and hsbd 
Rfh

fl
f2bjxyjsvdj2 dfyRfh

fl
f2b df, wherefl andfh, respectively, are the lower

and upper limits of the noise bandwidth. Heregsbd is
related to the power of the time derivative ofy [10], and
hsbd represents the ratio of the power transmitted fro
the noise toy [5].

Next, we apply the theory from Ref. [11] which wa
used to estimate the output SNR in nondynamical s
tems driven by colored noise. When the input sine wa
is slower than the characteristic time of the system,u

in Eq. (5) is modulated asu 2 fA sins2pf0tdys1 1 gdg.
Substituting this expression into Eq. (4) and expandi
it in a Taylor series inA sins2pf0td gives the time-
dependent firing rateRstd. When Ays1 1 gd ø u, re-
taining only the lowest order term gives

Rstd ø
2r0

1 1 2TRr0

"
1 1

uAg sins2pf0td
s2

ys1 1 2TRr0d

#
, (6)

where s2
y  hsbds2

N and Ag  Ays1 1 gd. The time-
averaged value of the output pulse trainUav std is

Uav std  KRstd  Rstd , (7)

whereK is the area under an individual pulse which w
set to unity without loss of generality. From Eqs. (6
and (7), we obtain the signal power at the input driv
frequencyf0 as

S 
4A2

gu2r2
0

s4
ys1 1 2TRr0d4 . (8)

Assuming roughly that the sequence of pulses is mo
or less random [12], the PSD in the absence of a sig
can be obtained using Campbell’s theory [13] asN 
K2R0  R0. Hence, the SNR SyN is

SNR 
2A2

gu2r0

h2sbds4
N s1 1 2TRr0d3

. (9)

Figure 4 shows theoretical predictions of the S
profile given by Eq. (9). Figure 4(a) is similar to th
2404
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FIG. 4. Theoretical predictions of output SNR versus inp
noise variance as given by Eq. (9) for the linearized FHN mo
(with ´  0.005, g  0.3, u  0.03, and TR  0.67). The
values ofgsbd and hsbd are calculated numerically. The tw
axes in each plot have arbitrary units. The bandwidth of
noise is 0.001–1 Hz (a), 0.001–100 Hz (b), 0.001–200 Hz
and 0.001–0.2 Hz (d). Note that the frequencies in the the
do not correspond quantitatively to those in the experiments

experimental results in Fig. 3 (neurons #1 and #2,
particular) [14]. The theory can account qualitative
for the dependence of the optimal noise variance on
value of b and the relative peak values of the outp
SNR. Namely, asb increases so that the noise h
stronger time correlations, the peak SNR decreases
the optimal noise intensity shifts toward higher value
A similar result has been previously reported in S
driven by Ornstein-Uhlenbeck processes [15], althou
the definition of noise intensity differs from ours. I
Figs. 4(b) and 4(c), we see that1yf noise can be bette
(in the sense of requiring a smaller noise variance
achieve the peak output SNR) than white noise wh
the upper limitfh of the noise bandwidth is sufficiently
large. Figure 4(b) shows the theoretical prediction wh
fh is increased to100 Hz. In this case, the optima
noise variance is smaller for1yf noise, and1yf noise
can realize a higher output SNR than white noise
small noise variance. Asfh is increased further, this
effect becomes more prominent [see Fig. 4(c)]. No
however, that the peak output SNR for white noise
always larger than that for1yf noise. Unfortunately, in
our current experimental setup, situations such as thos
Figs. 4(b) and 4(c) cannot be realized due to the limi
bandwidth of the actuator. Finally, note that whenfh

is small [Fig. 4(d)], the differences between the optim
noise variance become ambiguous and the output SNR
1yf noise is smaller than that for white noise over t
entire range of noise variance.

In this Letter, we have shown that the input noi
spectrum can dramatically affect the output SNR cur
Optimizing for various performance criteria, such as t
peak output SNR value over a wide noise range, m
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be achieved by different colors or types of noise. Th
optimal noise characteristics, including its spectrum, w
depend critically on the dynamics of the system.

For the neurons in our experiment, one might consid
white noise to be “better” than1yf noise for SR because
the peak output SNR for white noise is larger and th
optimal noise variance is smaller. However, our theo
predicts that1yf noise may be better than white noise
when the upper frequency limit of the noise is relativel
high, because in that regime1yf noise can be used to
detect subthreshold signals with a smaller noise lev
Even when this is not the case, there still may be ranges
noise variance over which the output SNR is significant
greater for1yf noise than for white noise. Moreover, as
shown in the experimental data of Fig. 3 and the theory
Fig. 4(a), such ranges may be significantly larger than t
range over which white noise is superior.

The functional significance of1yf noise has not been
fully elucidated in spite of its common occurrence in
biological systems. Our experimental result that1yf
noise can induce SR in neuronal systemsin vitro suggests
that this type of noise could be operative in neuron
systemsin vivo. Our theoretical result that1yf noise can
be better for SR when the noise bandwidth is sufficient
large may provide a novel explanation as to why1yf
noise would be desirable for biological systems.

We thank C. Chow for useful discussions and C. Dorv
and K. Rudolph for experimental assistance. This wo
was supported by the Japan Society for the Promotion
Science for Young Scientists (D. N.), the U.S. Departme
of Energy (J. J. C.), the National Science Foundatio
(J. J. C.), and the National Institutes of Health (P. G.).

[1] R. Benzi, S. Sutera, and A. Vulpiani, J. Phys. A14, L453
(1981); C. Nicolis, Tellus34, 1 (1982).

[2] A. Longtin, A. Bulsara, and F. Moss, Phys. Rev. Lett.67,
656 (1991); J. K. Douglass, L. Wilkens, E. Pantazelou, an
F. Moss, Nature (London)365, 337 (1993); K. Wiesenfeld
et al., Phys. Rev. Lett.72, 2125 (1994); J. J. Collins,
C. C. Chow, and T. T. Imhoff, Phys. Rev. E52, R3321
(1995); Nature (London)376, 236 (1995); J. E. Levin
and J. P. Miller, Nature (London)380, 165 (1996); J. J.
e
ill

er

e
ry

y

el.
of

ly

in
he

al

ly

al
rk
of
nt
n

d

Collins, T. T. Imhoff, and P. Grigg, J. Neurophysiol.76,
642 (1996); P. Cordoet al., ibid. 383, 769 (1996); J. J.
Collins, T. T. Imhoff, and P. Grigg,ibid. 383, 770 (1996);
B. J. Gluckmanet al., Phys. Rev. Lett.77, 4098 (1996);
R. P. Morse and E. F. Evans, Nature Medicine2, 928
(1996); F. Y. Chiou-Tanet al., Int. J. Bifurc. Chaos Appl.
Sci. Eng.6, 1389 (1996); J. J. Collins, T. T. Imhoff, and
P. Grigg, Phys. Rev. E56, 923 (1997).

[3] J. B. Bassingthwaighte, L. S. Lievovitch, and B. J. Wes
Fractal Physiology(Oxford University Press, New York,
1994); Y. Yamamoto and R. L. Hughson, Physica (Am
sterdam)68D, 250 (1993); Am. J. Phys.266, R40 (1994);
D. Nozaki, K. Nakazawa, and Y. Yamamoto, Exp. Brain
Res.105, 402 (1995);112, 112 (1996); M. C. Teich, IEEE
Trans. Biomed. Eng.36, 150 (1989).

[4] P. Manneville, J. Phys. (Paris)41, 1235 (1980); M. F.
Shlesinger, Ann. N.Y. Acad. Sci.504, 214 (1987); P. Bak,
C. Tang, and K. Wiesenfeld, Phys. Rev. A38, 364 (1988).

[5] D. Nozaki, J. J. Collins, and Y. Yamamoto (to be
published).

[6] D. Nozaki and Y. Yamamoto, Phys. Lett. A243, 281
(1998).

[7] K. A. Richardson, T. T. Imhoff, P. Grigg, and J. J. Collins,
Phys. Rev. Lett.80, 2485 (1998).

[8] The 1yfb noise was generated using the spectrum-bas
method described in Ref. [6].

[9] We tested 14 neurons in total. However, nonstationari
was observed in two of the neurons. Thus, we report on
on the results from the other 12 neurons.

[10] S. O. Rice, inSelected Papers on Noise and Stochast
Processes,edited by N. Wax (Dover, New York, 1954).

[11] Z. Gingl, L. B. Kiss, and F. Moss, Europhys. Lett.29, 191
(1995).

[12] The subthreshold variability of the membrane voltag
is time correlated because of the dynamical modulatio
of correlated noise. Thus, the assumption of a rando
impulse train should be taken simply as an approximatio

[13] A. Papoulis,Probability, Random Variables, and Stochas
tic Processes(McGraw-Hill, New York, 1991), 3rd ed.

[14] The time scale and parameters of the theory do not corr
spond directly to those of the experimental neuronal sy
tem. Hence, we do not expect the theory to quantitative
predict the experimental results. This is the reason wh
we do not fit the experimental data using the theoretic
curve given by Eq. (9).

[15] P. Hänggi, P. Jung, C. Zerbe, and F. Moss, J. Stat. Ph
70, 25 (1993).
2405


