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Theoretical relationship between the generalization function and the primitives
State-space model and trial-dependent adaptation to a constant force field

We assumed that the output force is constructed by a linear summation of the output of

primitives as:
Aps At ; ;

where i is the trial number, and g(6,,6,) = [9.(6,,6,),9,(6,,0,), -, gn (6, 6,)]*and
w = [wy, Wy, -, wy]t are column vectors whose elements represent the output and

weight of each primitive, respectively.

A state space model of the motor adaptation to the force field f can be

represented as:

e® = d(e) (O ~ fO) (82)



w*D = qw® + e Ok g (6", 61) (S3)

where e is the movement error, d(6;) is the compliance that depends on the
movement direction of the trained arm (here, we assume that the left arm is trained), and
a and K are constants representing, respectively, the spontaneous loss of memory and

the update rate to the error.

From these equations, we can obtain the trial-dependent changes in the
movement error when a constant force f is imposed for only a particular movement

combination (6,,6;) as:

m) — K[d®)’fg'g [ _ t 1(n-1) (1-a)d(8)f
€ 1-a+Kd(8)glg [(l Kd(el)g g] + 1-a+Kd(0)glg ( 4)

where g is the abbreviation of g(6,.,6,).

From Egs. (S1)-(S3), the weight vector after sufficient training of a constant

force field f is obtained as:

t — Kd(61)fg(6r,01)"
W= 1-a+Kd(6))g(6r,0)t9(6r,61) (53)
Therefore, the output force can be represented as:
2 Kd(6))g(6,,0)g(6,6))
f(er’ 01) — (g g l f (86)

1-a+Kd(6)g (67,01t g(6r.6))

When movement directions of both arms are changed by A8, and A6;, the force

output (i.e., aftereffect) is represented as:



f(6, + A8,,0, + A8) = wtg(6, + AB,, 0, + AB)

_ Kd(Gl)g(Hr,el)tg(9r+A0r,91+A91)f
1-a+Kd(0;)g(6+.6)tg(6r.6)) '

(S7)

Thus, the function of how the training effect is transferred from (6,,6;) to (6, +

AB,, 0, + AB;) is represented by:

f(6r+06,,01+06)) _ g(6,,00)" g(6r+A6.,0,+46;)
®(AG,,AB)) = . = S8
86y, 46,) £6,.60) 9(6r.0))tg(67.6)) (58)

Decomposition of the generalization function: Multiplicative encoding

If the primitives encode the movement directions of both hands multiplicatively as:

gj (97': 01) = T}(Qr)l] (91), then
yzl g] (91"' Ql)g] (01' + Agr; 0[ + AGZ) = ?]:1 1’}(07_) l] (91)7} (01' + Aer)l] (Qr + Ael)
= YN 1,(6,) 1;(6, + 26,)L,(8)1;(6, + 18)). (S9)

When N is sufficiently large (N is assumed to be a square number), and [;(6,) and
77(6,) have translational symmetry with respect to j and are distributed uniformly on

the (6,,6;) plane, then

119;(6:,60)9;(6, + A6,, 0, + AB)
~ 130 500106, +86,) T, 1,040, + 86, (S10)

Thus, the transfer function is:



19;06,,6)g;(6, + 16,6, + A6,)
?’:1 gj(er' Ql)gj(er; 91)

CD(AQr, AQZ) =

B 10130, + 86,) BN, 1616, + 46)

2 156,16, XY, 1,(8)1(6)

= ®(A6,,0)P(0,A8)). (S11)

Decomposition of the generalization function: Additive encoding

If the primitives encode the movement directions of both hands additively as:

9;(6:,8)) = 7(6,) + ;(6,), then
XY 19;(6,,6)9;(6, + A6,,6, + A6;)
= X alr;(6,) +1;(8)]1[r; (6, + A6,) + 1;(6, + A6))]
= Xl (6:) +1;(8)1{[r; (6, + A6,) + 1;(6))]
+[r;(6,) + 1; (6, + A6,)] — [1;(6,) + 1;(6)]}- (S12)
Thus, the transfer function is:
®(AB,, AF)) = d(AF,,0) + d(0,A8,) — 1. (S13)

It should be noted that a previous work (Wainscott et al., 2005) has obtained
theoretically similar relationships (Eqs.(S11) and (S13)) in the generalization function

calculated from the trial-by-trial changes in the aftereffects.



Special case: Gaussian encoding

Here, we assume that the encoding function can be represented by a Gaussian function.
In the case of multiplicative and additive encoding, the primitive can be represented,

respectively, as:

r 91‘ 2 2
g;6,,6) = {arexp [(q)’—)] +b }{alexp [((pl’—l)] + bl} (S14)
and

_(‘Prj_er)z
202

9;6,,6) = arexp[ ] + a,exp [(?710] +b (S15)

where a and b are constants, and ¢ indicates the preferred direction.

Multiplicative case:
The numerator of Eq. (S8) can be represented as:
11966096, + A6,,0, + AB)

(<Pl,—9l)

ri—0r
M] +b }{alexp[

= ﬂvl{arexp[ +bl}

~(@r ;=07 —00;)? ~(p1;=0:-80)?]
{arexp [((pj—z)] +br}{alexp [—((Pl’ a0 +bl}. (S16)

207 20}

If N is sufficiently large and the preferred directions are uniformly distributed,



(@ =02 RN D%
~ Z}/; {arexp [((pj—z)] +b }{arexp [M] + br}

202
—(@1;—0))> 0,—-A0;)?
X 2}/:1 {alexp [M] +b }{alexp [M] + bl}, (S17)
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then each summation in Eq. (S17) can be expanded as:

22 {aexp [ + o} {aenp [FEE2 4 )

(<Pj—9)2+(</)j—9—A9)2}
202

=a Z 1eXp{

+ab2 [exp{w’T)}+exp{M}]+\/_bz (S18)

The first term of the right side of Eq. (S18) can be rewritten as:

20+A6)\>

exp {_(¢;—9>2+<¢;—9—A9>2}=exp{_%}exp{ <A9)} (S19)

202

If N is sufficiently large, the summation of Eq. (S19) can be approximated by the

integral of the Gaussian function,

N lexp{ (o 57) )}=gfexp{——(q)_ )}dgo— . (S20)

o2 o2

Similarly, the summations in the second term on the right-hand side of Eq. (S18) can be

obtained from the following equation:

M, exp {~E2 9)} M ex p{—(q)’_e—mz}

202

_ VN (p—6)? __JNo
_—fexp{— }d(p =5 (S21)
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Therefore,

Y319(6:,6)g;(6. +A6,,6, + Ab))

2
={ar22f/% [ 9T)]+2 b, Ur+b2}{ —exp[ +21bz +bz}
(S22)
And, consequently,
27L19)(67.0)9(6,+06,,0,+A6))
D(AD,,N0,) =~
(A6, 26,) SN, 9j(6r0)9;(6r.6)
{arzo'r eXP[-(A‘}Brz)z]+2\/5arbr0r+2\/ﬁb$}{alzal exp[—mglz)z +2\/5t11b101+2\/5b12}
— r l
{ar20, +2V2a,bror+2vTb2}{a;20; +2v2a b0 +2Vmb}}
(S23)

Additive model case:

Similar to the case of the multiplicative encoding model under the assumption that N
is sufficiently large and the preferred directions are uniformly distributed, additive

encoding (Eq.(S15)) predicts ®(AH,.,A6;) as:

CD(AQ,«, AQI) =

2 26,)2 2 (a6))°
Vra, o exp[— —|+Vma; oy exp|—%—
40% 407

+2a,a;070;+2V2na, boy+2V2ma;bo+2mb?

2 2
Vra, o +Vma; o; +2ara;0-01+2V2na, boy+2V2ma;bo+2mwb?

(S24)



