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FOREWORD 

It is our privilege and pleasure to welcome all of you to Osaka and to the Eighth International Workshop on 
Biosignal Interpretation (BSI2016). The Workshop is a joint initiative of the International Medical Informatics 
Association (IMIA), the International Federation for Medical and Biological Engineering (IFMBE), the IEEE 
Engineering in Medicine and Biology Society (IEEE-EMBS), as well as the Japanese Society for Medical and 
Biological Engineering (JSMBE) and the Society of Instrument and Control Engineers (SICE). 

The Workshop aims at exploring the field of biosignal interpretation, including model-based biosignal analysis, 
data interpretation and integration, medical decision making extending existing signal processing methods and 
technologies for the effective utilization of biosignals in clinical environments, as well as for a deeper 
understanding of biological functions of the whole organism, system, to cellular, protein and gene scales. This 
Workshop has been held approximately every three years with the site rotationing between Europe, Asia and 
America. The first one was held in Denmark in 1993 and the most recent one was in Como, Italy, in 2012. 

In these last decades the field of biosignal interpretation has undoubtedly developed remarkably, with the topic 
permeating specialised conferences in biomedical engineering, medical physics, clinical medicine and, due to 
the advancement of data sciences, in biomedical and health informatics these days. 

The scientific program of BSI2016 is organised into 11 single scientific sessions (including one symposium 
and two poster sessions) which cover the main topics in this fascinating research area. The symposium is 
dedicated to the dynamical disease concept in the era of data sciences. In addition to the 
traditional areas of cardiovascular and sensory-motor nervous systems, interesting research topics like 
Brain Connectivity and Signal Processing for a Brain Computer Interface and for Sleep Studies are 
considered. 

We wish to thank all the important scientific organisations and institutions which have supported the 
Workshop and also the Members of Program and Scientific Committees who provided great help in organizing 
the scientific sessions. Many acknowledgements are due to the Local Organizing Committee and the 
Linkage convention service who have dedicated much time and effort to management, the venue and the 
interface to attendees. Finally, we hope that the Workshop attendees will bring home wonderful working 
experiences and memories of the most lively and hearty downtown in Japan, from here, the place called 
"Naniwa". 

Yoshiharu Yamamoto 
(General Chair) 

Taishin Nomura 
(Program Chair) 
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November 1, 2016 
8:30-10:30 Oral session 
Biological applications of advanced signal processing 

Tu1-1   PDF 
Invited lecture 
Intrapartum fetal heart rate analysis: From fractal features to sparse feature-selection based classification 
Patrice Abry  
Ecole Normale Supérieure de Lyon, France 

Tu1-2   PDF 

Scattering transform of heart rate variability for the prediction of ischemic stroke in patients with atrial fibrillation 
Roberto Leonarduzzi1, Patrice Abry1, Herwig Wendt2, Ken Kiyono3, Yoshiharu Yamamoto4, Eiichi Watanabe5, Junichiro Hayano6 
1Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, France 
2IRIT, CNRS UMR 5505, University of Toulouse, France 
3Osaka Uinversity, Japan 
4University of Tokyo, Japan 
5Fujita Health University, Japan 
6Nagoya City University, Japan 

Tu1-3   PDF 

Preliminary investigation of instantaneous cardiovascular dynamics from contactless video-photoplethysmography 
Gaetano Valenza1,2, Luca Iozzia3, Luca Cerina3, Luca Mainardi3, Riccardo Barbieri2,3 
1Research Centre E Piaggio, University of Pisa, Italy 
2Harvard Medical School, Massachusetts General Hospital, USA 
3Politecnico di Milano, Italy 

Tu1-4   PDF 

Savitzky-Golay filter-based detrended fluctuation analysis: theory and its application to physiological time series 
Yutaka Tsujimoto, Yasuyuki Suzuki, Masanori Shimono, Taishin Nomura, Ken Kiyono 
Osaka University, Japan 
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11:00 - 13:00 Oral session 
ECG and heart rate variability 

Tu2-1   PDF 

Conductive synthetic fabric electrodes: application to ECG measurement 
Yeonsik Noh, Sneh K. Sinha, Caitlin Eaton-Robb, Gregory M. Treich, Yang Guo, Mengfang Li, Xiaozheng Zhang, Gregory A. 
Sotzing, Ki H. Chon 
University of Connecticut, USA 

Tu2-2   PDF 

R-wave magnitude: A control input for ventricular assist devices
Seraina Anne Dual1, Gregor Ochsner1, Anastasios Petrou1, Raffael Amacher1, Markus Wilhelm2, Mirko Meboldt1, Marianne 
Schmid Daners1

1ETH Zurich, Switzerland 
2University Hospital Zurich, Switzerland

Tu2-3   PDF 

A method of efficient cardiac risk assessment based on the T-wave morphology changes in Holter ECG 
recordings Mitsuki Aihara1, Saya Nakamura1, Mami Murakami1, Kazuo Yana1, Takuya Ono2, Tomohide Ichikawa3, Eiichi 
Watanabe3 
1Hosei University, Japan 
2Nippon Medical School, Japan 
3Fujita Health University, Japan  

Tu2-4   PDF 

Confounding factors in ECG-based detection of sleep-disordered breathing 
Christoph Maier1, Hartmut Dickhaus2 
1Heilbronn University, Germany 
2Heidelberg University, Germany 

Tu2-5   PDF 

Reduced cardiac response to sleep apnea and increased risk of mortality Junichiro Hayano1, Emi 
Yuda1, Yutaka Yoshida1, Hiroki Ogasawara1, Eiichi Watanabe2 
1Nagoya City University, Japan 
2Fujita Health University, Japan 

Tu2-6   PDF 

Nonlinearity of heart rate variability induced by respiratory modulation 
Yuki Miki1, Yasuyuki Suzuki1, Masanori Shimono1, Eiichi Watanabe2, Junichiro Hayano3, Yoshiharu Yamamoto4, Taishin 
Nomura1, Ken Kiyono1 
1Osaka University, Japan 
2Fujita Health University, Japan 
3Nagoya City University, Japan 
4University of Tokyo, Japan 
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14:30 - 16:30 Oral session 
Connectivity and causality 

Tu3-1   PDF 

Linear and nonlinear functional connectivity methods to predict brain maturation in preterm babies 
Mario Lavanga, Ofelie De Wel, Alexander Caicedo, Katrien Jansen, Anneleen Dereymaeker, Gunnar Naulaers, Sabine Van Huffel 
KU Leuven, Belgium 

Tu3-2   PDF 

Quantification of the central-autonomic-network applying normalized shorttime partial directed coherence 
approach 
Steffen Schulz1, Mathias Bolz2, Karl-Jürgen Bär2, Andreas Voss1 
1Institute of Innovative Health Technologies IGHT, Ernst-Abbe-Hochschule Jena, Germany 
2University Hospital Jena, Germany 

Tu3-3   PDF 

Transfer entropy analysis of linear model residuals 
Fatima Elhamad, Mathias Baumert 
University of Adelaide, Australia 

Tu3-4   PDF 

Connectivity of epileptiform discharges during epileptic seizure in temporal lobe
Hisashi Yoshida1, Yasuto Yoshioka2, Masaharu Miyauchi1, Naoki Nakano1, Amami Kato1 
1Kindai University, Japan 
2ROHM semiconductor, Japan 

Tu3-5   PDF 

Partial correlation-based functional connectivity analysis of the optical intrinsic signals of the mouse neocortex 
during resting state 
Yuto Yoshida, Mitsuyuki Nakao, Norihiro Katayama 
Tohoku University, Japan 

Tu3-6   PDF 

From information flow to microconnectomics 
Masanori Shimono 
Osaka University, Japan 
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16:30 - 18:00 
Poster session 1 

P1-1   PDF 
Analysis of facial expression recognition by event-related potentials 
Taichi Hayasaka, Ayumi Miyachi 
National Institute of Technology, Toyota College, Japan 

P1-2   PDF 
To assess mental stability using electroencephalography
Yuko Mizuno-Matsumoto 
University of Hyogo, Japan 

P1-3   PDF 

Wavelet-crosscorrelation analysis of abnormal EEG in patients with mental disorders 
Kozue Yamaguchi, Yuko Mizuno-Matsumoto 
University of Hyogo, Japan 

P1-4   PDF 
Features of diffuse alpha pattern in electroencephalography 
Steven M. A. Carpels, Kozue Yamaguchi, Yuko Mizuno-Matsumoto 
University of Hyogo, Japan 

P1-5   PDF 
Convolutional neural networks using supervised pre-training for EEG-based emotion recognition 
Miku Yanagimoto, Chika Sugimoto 
Yokohama National University, Japan 

P1-6   PDF 
An EEG-based communication aid that uses the robot avatar 
Ryohei P. Hasegawa, Yoshiko Nakamura 
AIST, Japan 

P1-7   PDF 
Driver fatigue analysis based on binary brain networks 
Chi Zhang1, Fengyu Cong1, Hong Wang2 
1Dalian University of Technology, China 
2Northeastern University, China 

P1-8   PDF 
Cortical dipole imaging of visual evoked potential using sigmoid function-based filtering property 
Junichi Hori1, Shintaro Takasawa1,2 
1Niigata University, Japan 
2Terumo Corporation, Japan 

P1-9   PDF 

Motion aftereffect direction-specific responses in the steady-state visual evoked potentials 
Shiori Arimitsu, Keiko Momose 
Waseda University, Japan  

P1-10   PDF 
Multifractal characteristics of external anal sphincter based on sEMG signals 
Paulina Trybek1,2, Michal Nowakowski3, Lukasz Machura1,2 
1Silesian Center for Education and Interdisciplinary Research, Poland 
2University of Silesia, Poland 
3Jagiellonian University Medical College, Poland 

P1-11   PDF 
Random point process modeling of the spike trains in response to sinusoidally modulated pulsatile electric stimuli 
in auditory nerve fiber models 
Hiroyuki Mino 
Kanto Gakuin University, Japan 
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P1-12   PDF 
Activity analysis of neuronal networks with altered excitatory/inhibitory balance 
Shoko Iida1, Kenta Shimba1,2,3, Kiyoshi Kotani1,4, Yasuhiko Jimbo1 
1The University of Tokyo, Japan 
2Tokyo Institute of Technology, Japan 
3Japan Society for the Promotion of Science, Japan 
4JST PRESTO, Japan 

P1-13   PDF 
sEMG power spectrum after rectal cancer surgery 
Lukasz Machura1,2, Paulina Trybek1,2, Michal Nowakowski3 
1Silesian Center for Education and Interdisciplinary Research, Poland 
2University of Silesia, Poland 
3Jagiellonian University Medical College, Poland 

P1-14   PDF 
The relationship between recovery from muscle fatigue of the skeletal muscle and magnetic stimulation 
Yuya Yokota, Atsuo Nuruki 
Kagoshima University, Japan 

P1-15   PDF 
A microsaccade detection method by using an order-statistic time-window analysis 
Shohei Ohtani, Takeshi Kohama, Sho Kikkawa, Hisashi Yoshida 
Kindai University, Japan 

P1-16   PDF 
Simulation of spike propagation in neural network 
Shun Sakuma1, Yuko Mizuno-Matsumoto1, Yoshi Nishitani2, Shinichi Tamura3 
1University of Hyogo, Japan 
2Osaka University, Japan 
3NBL Technovator Co., Ltd., Japan 
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November 2, 2016 
8:30 - 10:30 Oral session 
Analysis of sleep dynamics 

We1-1   PDF 
Invited lecture 
Signal recording and non-linear processing in sleep research 
Thomas Penzel 
Charite-Universitatsmedizin Berlin, Germany 

We1-2   PDF 

Markov modeling of sleep stage transitions and ultradian REM sleep rhythm: A simulation study 
Akifumi Kishi, Ikuhiro Yamaguchi, Fumiharu Togo, Yoshiharu Yamamoto 
The University of Tokyo, Japan 

We1-3   PDF 

Wake-sleep transition from the perspective of cortico-thalamo-cortical loop: Electroencephalogram data analysis 
and simulation 
Ikuhiro Yamaguchi, Akifumi Kishi, Fumiharu Togo, Toru Nakamura, Yoshiharu Yamamoto 
The University of Tokyo, Japan 

We1-4   PDF 

Time delay between beta EEG and heart rate variability during sleep transitions: Comparison of insomnia 
patients and normal controls 
Hyunbin Kwon1, Jaewon Choi2, Yujin Lee2, Do-Un Jeong2, Kwangsuk Park1 
1Seoul National University, Korea 
2Seoul National University Hospital, Korea 
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11:00 - 13:00 Oral session 
Signal processing for human behaviors 

We2-1   PDF 

Heart rate and heart rate variability monitoring during sleep using 24-GHz microwave radars located beneath 
the mattress on the bed 
Masayuki Kagawa, Kazuki Suzumura, Ayako Hashizume, Takemi Matsui 
Tokyo Metropolitan University, Japan 

We2-2   PDF 

Automatic two-channel sleep-staging using a predictor-corrector method 
Shirin Riazy1, Tilo Wendler1, Jürgen Pilz2 
1HTW Berlin, Germany 
2Alpen-Adria university Klagenfurt, Austria 

We2-3   PDF 

Activation pattern of extensor digitorum brevis muscle during child walking 
Annachiara Strazza1, Michela Sara Palmieri2, Alessandro Mengarelli1, Sandro Fioretti1, Laura Burattini1, Ornella Orsini2, 
Antonio Bortone2, Francesco Di Nardo1 
1Università Politecnica delle Marche, Italy 
2Centro ambulatoriale di Riabilitazione Santo Stefano, Italy 

We2-4   PDF 

Intermittent control properties of car following: Driving simulator experiment 
Ihor Lubashevsky, Hiromasa Ando 
University of Aizu, Japan 

We2-5   PDF 

Application of empirical mode decomposition to mother and infant physical activity: Synchronization of 
circadian rhythms is associated with maternal mental health symptoms 
Etsuko Shimizu1, Toru Nakamura1,2, Jinhyuk Kim3, Kazuhiro Yoshiuchi1, Yoshiharu Yamamoto1 
1The University of Tokyo, Japan 
2JST, PRESTO, Japan 
3National Center of Neurology and Psychiatry, Japan 

We2-6   PDF 

Preceding psychological factors and calorie intake in patients with type 2 diabetes: Investigation by 
ecological momentary assessment 
Shuji Inada1, Yoko Iizuka1, Ken Ohashi2, Hiroe Kikuchi3, Yoshiharu Yamamoto1, Takashi Kadowaki1, Kazuhiro Yoshiuchi1 
1The University of Tokyo, Japan 
2National Cancer Center Hospital, Japan 
3National Center of Neurology and Psychiatry, Japan 
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14:30 - 16:30 Oral session 
Medical decision making 

We3-1   PDF 

Atomic force microscopy for bladder cancer detection 
Eugene Demidenko1, Igor Sokolov2, John Seigne3 
1Dartmouth College, USA 
2Tufts University, USA 
3Dartmouth-Hitchcock Medical Center, USA 

We3-2   PDF 

A normalized non-stationary wavelet based analysis approach for computer assisted classification of 
laryngoscopic high-speed video recordings 
Mona K. Fehling1,3, Jakob Unger2, Dietmar J. Hecker3, Bernhard Schick3, Jörg Lohscheller1 
1Trier University of Applied Sciences, Germany 
2University of California, USA 
3Saarland University Hospital, Germany 

We3-3   PDF 

Fetal heart rate classification: First vs. second stage of labor 
Jiri Spilka1, Roberto Leonarduzzi2, Vaclav Chudáček1, Patrice Abry2, Muriel Doret3 
1CIIRC, Czech Technical University in Prague, Czech Republic 
2Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, France 
3Femme-Mère-Enfant Hospital, France  

We3-4   PDF 

Assessment of cardiovascular oscillations in amnestic mild cognitive impairment 
Nicola Toschi1,2, Gaetano Valenza1,3, Luca Citi4, Maria Guerrisi1, Stefano Orsolini5, Carlo Tessa6, Stefano Diciotti5, 
Riccardo Barbieri2,7 
1Massachusetts General Hospital-Harvard Medical School, USA 
2University of Rome "Tor Vergata", Italy 
3University of Pisa, Italy 
4University of Essex, UK 
5University of Bologna, Italy 
6Versilia Hospital, Italy. 
7Politecnico di Milano, Italy 

We3-5   PDF 

A study of an evaluation method for analgesic level using fuzzy inference based on multiple analgesia indices 
during general anesthesia 
Shotaro Taniguchi1, Yujing Cao1, Eiko Furutani1, Toshihiro Takeda2, Gotaro Shirakami2 
1Kyoto University, Japan 
2Kagawa University, Japan 

We3-6   PDF 

An adaptive and automatic parameter selection method based on rational dilation wavelet transform for 
wheeze type classification 
Sezer Ulukaya1, Gorkem Serbes2, Yasemin P. Kahya3 
1Bogazici and Trakya University, Turkey 
2Yildiz Technical University, Turkey 
3Bogazici University, Turkey 
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16:30 - 18:00 
Poster session 2 

P2-1   PDF 
Effect of body posture on LF/HF in ambulatory ECG 
Yutaka Yoshida1, Yuki Furukawa1, Hiroki Ogasawara1, Emi Yuda1, Junichiro Hayano1, ALLSTAR Study Group2 
1Nagoya City University, Japan 
2Allostatic State Mapping by Ambulatory ECG Repository Study Group 

P2-2   PDF 

On the heart-rate signal provided by the Zephyr BioHarness 3.0 
Daniele Nepi, Angela Agostinelli, Elvira Maranesi, Agnese Sbrollini, Micaela Morettini, Francesco Di Nardo, Sandro Fioretti, Laura 
Burattini 
Università Politecnica delle Marche, Italy 

P2-3   PDF 
Ambulatory physical activity monitoring to know healthy life expectancy 
Emi Yuda1, Yutaka Yoshida1, Hiroki Ogasawara1, Junichiro Hayano1, ALLSTAR Study Group2 
1Nagoya City University, Japan 
2Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR) project 

P2-4   PDF 
Estimation method of amount of swallowed water from swallowing sounds 
Masataka Imura1, Hiroki Nakafuji2, Shunsuke Yoshimoto2, Osamu Oshiro2 
1Kwansei Gakuin University, Japan
2Osaka University, Japan 

P2-5   PDF 
An integrated data format for the long term ECG recordings 
Hidenao Nagai1, Toyohito Shibui1, Yoshiki Kinukawa1, Satoshi Wakabayashi1, Kazuo Yana1, Takuya Ono2 
1Hosei University, Japan 
2Nippon Medical School, Japan 

P2-6   PDF 
Physiological variation during drowsy driving 
Masashi Kitagawa, Shima Okada 
Kindai University, Japan 

P2-7   PDF 
Pharmaceutical benefit assessment for involuntary exerciser patient by image processing 
Masaya Kimachi, Shima Okada 
Kindai University, Japan 

P2-8   PDF 
The preliminary study of core temperature estimation with external auditory meatus temperature sensor 
while exercising 
MyungJun Koh, SooYoung Sim, KwangMin Joo, Kwangsuk Park 
Seoul National University, Korea 

P2-9   PDF 
Validating stability of components extracted by nonnegative matrix factorization via clustering 
Tianyi Zhou1,2, Guoqiang Hu1,2, Reza Mahini1, Xiao-Feng Gong1, Qiu-Hua Lin1, Fengyu Cong1,2 
1Dalian University of Technology, China 
2University of Jyväskylä, Finland 

P2-10   PDF 
A simple method for monitoring integration of pore-forming protein into lipid bilayer 
Kenta Shimba1,2,3, Yoshitaka Miyamoto1, Tohru Yagi1, 
1Tokyo Institute of Technology, Japan 
2Japan Society for the Promotion of Science, Japan 
3The University of Tokyo, Japan 
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P2-11   PDF 
Assessment of ozone autohemotherapy on patients with multiple sclerosis by time-frequency analysis of 
near-infrared spectroscopy signals 
Xue Han1, Filippo Molinari2, Samanta Rossati2 
1Wuhan University of Technology, P. R. China 
2Politecnico di Torino, Italy 

P2-12   PDF 

Human response delay as a random variable: Experiments on balancing overdamped virtual pendulum 
Takashi Suzuki, Ihor Lubashevsky, Shigeru Kanemoto 
University of Aizu, Japan 

P2-13   PDF 
Mesolevel intermittency of human control: Car-driving simulator experiments 
Ryoji Yamauchi, Ihor Lubashevsky, Hiromasa Ando 
University of Aizu, Japan 

P2-14   PDF 
Reinforcement learning with status quo bias 
Kosuke Hijikata, Ihor Lubashevsky
University of Aizu, Japan 

P2-15   PDF 
Development of a reassemblable robot for automatic ultrasound diagnosis 
Naoyuki Kato1, Shigeru Matsuno1, Munemichi Tateyama1, Yutaro Ogawa1, Kiyoshi Kotani1,2, Yasuhiko Jimbo1 
1The University of Tokyo, Japan 
2Japan Science and Technology Agency PRESTO, Japan 

P2-16   PDF 
Neurophysiological evaluation of visual and haptic sense mechanisms in grip movements with artificial visual 
transmission delay 
Yasushi Fujiwara1, Kazutomo Yunokuchi1, Atsuo Maruyama2, Atsuo Nuruki1 
1Kagoshima University, Japan 
2Niigata University of Health and Welfare, Japan 

P2-17   PDF 
Skin motion artifact in motion capturing of human bipedal gait: Characterization and influence on joint 
torque estimation 
Takuya Inoue, Yasuyuki Suzuki, Ken Kiyono, Taishin Nomura 
Osaka University, Osaka, Japan 

P2-18   PDF 
Research for real-time wireless bio-signal detecting system 
Hojong Chang1, Hyeongmin Choi2, Taeyun Lim3, Suhan Kim2, Jaeil Kim3, Cheonyang Lee2, Hyunduk Kim1, Gyuseong Cho1 
1KAIST, Korea
2Physionics Co., Ltd, Korea 
3Doohaine Co., Ltd., Korea 
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November 3, 2016 
9:30 - 12:00 Symposium 
From dynamical disease to disease dynamics: Predictive medicine in the era of data science 

Th1-1 
Invited Review 
Dynamical diseases: Insights into the etiology and treatment of medical emergencies 
John G. Milton 
The Claremont Colleges, USA 

Th1-2 
Invited Review 
Detection of pre-disease states by DNB (dynamical network biomarkers) toward predictive medicine 
Kazuyuki Aihara 
The University of Tokyo, Japan 

Th1-3 

Heart rate dynamics predicting adverse clinical events 
Junichiro Hayano1, Ken Kiyono2, Eiichi Watanabe3, Yoshiharu Yamamoto4 
1Nagoya City University, Japan 
2Osaka University, Japan 
3Fujita Health University, Japan 
4The University of Tokyo, Japan 
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Intermittency and loss of intermittency during human motor control in health and disease 
Taishin Nomura1, Yasuyuki Suzuki1,2, Fu Chunjiang1, Ken Kiyono1 
1Osaka University, Japan 
2Carnegie Mellon University, USA 

Th1-5 

Early warning signals for dynamical phase transitions into addictive behavior 
Jerome C. Foo1, Hamid R. Noori2, Ikuhiro Yamaguchi1, Valentina Vengeliene2, Alejandro Cosa-Linan2, Toru Nakamura1, Kenji 
Morita1, Rainer Spanagel2, Yoshiharu Yamamoto1 
1The University of Tokyo, Japan 
2Heidelberg University, Germany 
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13:30 - 15:30 Oral Session 
Signal processing for brain computer interface (BCI) 

Th2-1   PDF 
Invited Lecture 
Brain computer interfaces for the industrial application of cognitive neuroscience 
Fabio Babiloni  
University of Rome Sapienza, Italy 

Th2-2   PDF 

Wireless brain-computer interface based on steady-state visual evoked potential considering user’s gaze 
Shingo Otsuka, Junichi Hori 
Niigata University, Japan 

Th2-3   PDF 

Development of a mobile and multisensory AR-BCI to operate wheelchair and electrical devices 
Masashi Sekimoto1, Yuya Kobayashi1, Yutaro Ogawa1, Kiyoshi Kotani1,2, Yasuhiko Jimbo1 
1The University of Tokyo, Japan 
2PRESTO, Japan Science and Technology Agency, Japan 

Th2-4   PDF 

Research on cortical-muscular responses during transitions of sensorimotor states 
Qi Huang1, 2, Li Jiang1, Masashi Sekimoto2, Akihiko Akao2, Kiyoshi Kotani2,3, Yasuhiko Jimbo2 
1Harbin Institute of Technology, China 
2The University of Tokyo, Japan 
3PRESTO, Japan Science and Technology Agency, Japan 
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16:00 - 18:00 Oral session 
EEG signal processing 

Th3-1   PDF 

The estimate of mental workload induced by the use of different processors in a cochlear implant during 
word recognition in a noisy environment 
Giulia Cartocci1,2, Anton Giulio Maglione1,2, Dario Rossi1,2, Enrica Modica1,2, Paolo Malerba3, Gianluca Borghini2, Gianluca Di 
Flumeri2, Pietro Aricò2, Fabio Babiloni1,2 
1Sapienza University of Rome, Italy 
2BrainSigns srl, Italy 
3Cochlear s.r.l. Italy 

Th3-2   PDF 

Online detection of auditory attention in a neurofeedback application 
Rob Zink1,2, Annelies Baptist1,2, Alexander Bertrand1,2, Sabine Van Huffel1,2, Maarten De Vos3 
1KU Leuven, Belgium 
2iMinds Medical IT, Leuven, Belgium 
3Oxford University, United Kingdom 

Th3-3   PDF 

Alpha and low-beta oscillatory patterns extracted with canonical polyadic decomposition relate to LDA 
classifier performance in real-life mobile EEG 
Rob Zink1,2, Borbála Hunyadi1,2, Sabine Van Huffel1,2, Maarten De Vos3 
1KU Leuven, Belgium. 
2iMinds Medical IT, Belgium. 
3Oxford University, United Kingdom 

Th3-4   PDF 

Tracking the poles of an AR time-variant model for EEG studies 
Giulia Tacchino, Anna M. Bianchi 
Politecnico di Milano, Italy 

Th3-5   PDF 

Automatic artifacts correction: improving on-line EEG analysis 
Stefania Coelli, Giulia Tacchino, Anna Maria Bianchi 
Politecnico di Milano, Italy 

Th3-6   PDF 

Cluster aggregation for analyzing event-related potentials 
Reza Mahini1, Tianyi Zhou1,2, Peng Li3, Asoke Nandi4, Hong Li3, Fengyu Cong1,2 
1Dalian University of Technology, China 
2University of Jyvaskyla, Finland 
3Shenzhen University, China 
4Brunel University, UK 



Invited lecture 

Intrapartum fetal heart rate analysis:  
From fractal features to sparse feature-selection based classification 

Patrice Abry 

Ecole Normale Supérieure de Lyon, France 

Abstract 

Fetal Heart Rate (FHR) monitoring is routinely used in clinical practice to help obstetricians assess fetal 
health status during delivery. However, early detection of fetal acidosis that allows relevant decisions for 
operative delivery remains a challenging task, receiving considerable attention. The present work renews 
FHR analysis and fetal acidosis detection in two ways. First, fractal based features are shown to constitute 
relevant tools for the assessment of cardiac variability, that significantly outperform and thus satisfactory 
replace other traditional assessment of cardiac variability such as LF/HF ratio, that relies either on the 
splitting into a priori chosen frequency bands of the spectral contant of data, or on spectral and DFA based 
scaling exponents. Second, fetal acidosis detection is commonly formulated as a pH based classification 
problem. Our original proposition is to promote Sparse Support Vector Machine classification that permits to 
select a small number of relevant features as well as to achieve efficient fetal acidosis detection. Concepts 
and tools are illustrated at on a large (1288 subjects) and well documented database, collected at french 
public academic Hospital in Lyon. It is shown that the automatic selection of a sparse subset of features 
achieves satisfactory classification performance (sensitivity 0.73 and specificity 0.75, outperforming clinical 
practice). The subset of selected features receive simple interpretation in clinical practice. A second large 
database collected in Czech Republic is further used to show the generalization ability of both fractal 
features and Sparse Support Vector Machine classification. 
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Scattering Transform of Heart Rate Variability for the Prediction
of Ischemic Stroke in Patients with Atrial Fibrillation

Roberto Leonarduzzi1, Patrice Abry1, Herwig Wendt2, Ken Kiyono3,
Yoshiharu Yamamoto4, Eiichi Watanabe5, Junichiro Hayano6

1Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France;
2IRIT, CNRS UMR 5505, University of Toulouse, France;

3Division of Bioengineering, Graduate School of Engineering Science, Osaka Uinversity, Toyonaka, Japan;
4Educational Physiology Laboratory, Graduate School of Education, University of Tokyo, Tokyo, Japan;

5Dept of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan;
6Dept of Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan;

Abstract

Atrial fibrillation is an identified risk factor for is-
chemic strokes. Thus, the dynamics of heart rate
under fibrillation might provide a useful predictor for
strokes. The complex, nonlinear and multiscale na-
ture of the heart rate calls for the use of powerful
signal processing techniques. We explored the ap-
plication of a novel tool, the scattering transform, to
discriminate and predict ischemic strokes from heart
rate dynamics. We found that groups of scatter-
ing coefficients, at several time scales, were signif-
icantly higher (p-value < 0.05) in patients who de-
veloped ischemic strokes than in those who did not.
We also found significant differences in predictive
power (C-statistic) between scattering coefficients
and the CHA2DS2-VASc score. Results suggest the
use of scattering coefficients for the analysis of pa-
tients with atrial fibrillation.

Keywords Atrial fibrillation, ischemic stroke, heart
rate variability, scattering transform, multiscale analysis.

1 Introduction

Atrial fibrillation. AF is a supraventricular tachyarryth-
mia characterized by uncoordinated atrial activation [1].
In this condition, the sinus node loses its ability to govern
ventricular response [2], and, instead, the atrium is depo-
larized by a chaotic pattern of rapid and random impulses
with two main consequences. First, the atrial tissue con-
tracts in an unsynchronized and erratic way, causing the
atrial wall to quiver rather than contract [1]. Second, the
random pulses that reach the atrioventricular node cause
high irregularity in the ventricular response RR intervals
[3]. In consequence, the ventricular response is charac-
terized by a white-noise-like nature in the high and low
frequency bands (2.5 s to 25 s), and more complex and
organized dynamics in the very-low and ultra-low bands

This work was supported by CNRS grant PICS 7260.

(25 s to more than 300 s), which reflect circadian rhythms
and AV node properties mediated by the autonomous ner-
vous system [1, 2].
Ischemic stroke. The impaired mechanical function of
the atrium decreases blood flow rates within, and thus fa-
vors thrombus’ formation and embolic events [1]. Thus,
AF is identified as an important risk factor for ischemic
strokes (IS) [1]. In fact, treatment of AF patients with oral
anticoagulants is a mainstay of current clinical practice
[1]. In consequence, a robust risk stratification scheme of
stroke likelihood in AF patients would be of great clinical
value, aiding in the decisions for prophylaxis and allow-
ing to reduce the exposure of low-risk patients to bleeding
complications.
Related work. To date, a standard risk stratification
metric to guide antithrombotic therapy in AF patients is
provided by the CHA2DS2-VASc score [4]. This score
groups many risk factors: congestive heart failure, hyper-
tension, age ≥ 75 years (doubled), diabetes, stroke (dou-
bled), vascular disease, age 65–74 years, and gender [4].
On a different approach, risk factors have been obtained
from the irregular dynamics of the ventricular response
RR intervals, since their irregularity shares a common
origin with atrial mechanisms that favor thrombogenesis.
In [5], the authors used traditional time-domain statisti-
cal measures and entropies to characterize irregularity,
and showed that they are associated with an increased
risk of mortality. More recently, an explicit connection
between irregular RR-interval dynamics and IS was ex-
plored in [6], where the authors showed that multiscale
sample entropy constitutes a useful predictor of ischemic
strokes from AF patients.
Goals, contributions and outline. In this contribution,
we propose to explore the potential of a recently intro-
duced signal processing tool to predict ischemic strokes
from the RR interval irregularity of AF patients. This
tool, referred to as the scattering transform [7, 8], is a
nonlinear multiscale transform that provides a stable and
informative characterization for processes with complex
multiscale dynamics. It has been successfully used, e.g.,
for audio classification [8] and acidosis detection from
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fetal heart rate [9–11]. A brief introduction to the scatter-
ing transform is provided in Sec. 2. A database of 173 AF
patients from a hospital in Aichi, Japan, is then described
in Sec. 3. Next, the potentials and benefits of the scatter-
ing transform for prediction of ischemic strokes from AF
patients are discussed in Sec. 4.

2 Scattering transform

Wavelet coefficients. Let X(t) denote the signal to be
analyzed. Let alsoψ(t) denote a complex analytic mother
wavelet, that is, a band-pass filter supported over positive
frequencies. Let ψj(t) = {2−jψ(2−jt) j ∈ N} denote
the collection of templates of ψ dilated at scales 2j . The
complex dyadic wavelet transform computes the down-
sampled convolutions X ? ψj(2

jk) for all times t = 2jk
and scales 2j .
Scattering transform. First-order scattering coefficients
S1(j1) are defined as the average amplitude of the modu-
lus of wavelet coefficientsX?ψj1(t), for any 1 ≤ j1 ≤ J :

S1(j1) = 2−j1

2j1∑
k=1

|X ? ψj1(2
jk)|. (1)

The average in (1) looses all information related to the
time evolution of |X ? ψj(t)|. This information can be
recovered by computing a second level of wavelet coeffi-
cients: |X ? ψj1(t)| ? ψj2(t), for all scales 2j2 such that
j1 ≤ j2 ≤ J . Since their amplitude is proportional to that
of previous level coefficients, they need to be renormal-
ized to avoid spurious dependence. Thus, second-order
scattering coefficients are defined, for j2 > j1, as:

S2(j1, j2) =
2−j2

S1(j1)

2j2∑
k=0

||X ? ψj1 | ? ψj2(2
j2k)|. (2)

Interpretation. Second-order coefficients can be inter-
preted as providing a nonlinear representation of the mul-
tiscale dynamics of the wavelet coefficients of X at scale
j1. In this work we focus only on the first two or-
ders of scattering coefficients, since they carry most of
the energy in X , as shown in [7, 9]. Information con-
tained in first-order scattering coefficients S1(j1) is re-
lated to the second-order statistics (correlation, spectrum)
of X [7], and thus called linear in the following. In con-
trast, second-order scattering coefficients depend on the
higher-order moments of X (and thus characterize X be-
yond spectral properties) [7, 9], and will thus be termed
nonlinear.
Illustration. Fig. 1 illustrates this property of scattering
coefficients. It shows the (log of) coefficients S1(j1) and
S2(j1 = 10, j2), averaged over realizations of fractional
Gaussian noise (fGn, [12]), a processes defined entirely
by its second order moments, and the increments of mul-
tifractal random walk (MRW, [13]), a process with non-
trivial higher-order statistics. Realizations of both pro-
cesses where synthesized to have the exact same covari-
ance structure. In consequence, Fig. 1 (left) shows that
linear scattering coefficients S1(j1) are unable to distin-
guish both processes. In contrast, Fig. 1 (right) shows that
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Figure 1: Coefficients log2 S1(j1) (left) and log2 S2(j1 =
3, j2) (right), for two synthetic processes with the same
second-order moments but different higher-order mo-
ments.

nonlinear coefficients S2(j1, j2), for a particular choice
of j1, are able to discriminate them based on their higher-
order statistics.
Software. We computed scattering coefficients using
the ScatNet software package for Matlab, available at
http://www.di.ens.fr/data/software/
scatnet/, using a Morlet analytic wavelet.

3 Database

Data collection. We analyzed 24-hour Holter records
from patients suffering from permanent AF, defined as
AF of more than one year of duration, with no evidence of
sinus rhythm, and with no planned sinus rhythm restora-
tion. We excluded patients with complete AV block, sus-
tained ventricular tachycardia, ventricular ectopy > 5%,
cardiac pacemakers, paroxysmal AF, valvular AF or pros-
thethic heart valves, with more than 5% of the Holter
record corrupted by artifacts or noise, taking rhythm con-
trol drugs, or that had acute coronary syndrome, strokes,
hemodynamic instability or undergone surgery in the pre-
ceding 6 months. Application of these criteria led to a
total of 173 subjects. The CHA2DS2-VASc score was
recorded for each patient as a baseline measurement of
the stroke risk [4].

Patients underwent a follow-up period of 47 ± 35
months. During this period, the diagnosis of ischemic
stroke was made by a neurosurgeon. Ischemic strokes
were observed in 22 patients.

The study was approved by the ethics committee of
Fujita Health University and conformed to the princi-
ples outlined in the declaration of Helsinki. All patients
provided written informed consent at the time of Holter
recording.
Recordings. The 24-hour-long Holter ECGs were
recorded with a 2-channel digital recorder (Fukuda Den-
shi, Tokyo) and digitized at a 125 Hz sampling frequency
and 12 bit resolution. RR-intervals were detected auto-
matically, with a manual review and edition by experts.
Preprocessing. All RR time series were preprocessed
for outliers, excluding all RR intervals smaller than 350
ms, and larger than 3500 ms or 2.5 times the local 90%
percentile. Then, each RR time series was interpolated
and resampled at 2 Hz with a linear interpolation scheme,
since the wavelet procedure that we applied requires a
uniformly sampled time series.
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Figure 2: Coefficients log2 S1(j1) (left) and log2 S2(j1 =
10, j2) (right), for the RR time series of patients that did
(red crosses) and did not (blue crosses) develop ischemic
strokes (median and 95% confidence intervals).

Clinical information. All records are complemented by
clinical information, including the reference CHA2DS2-
VASc score and the administration of antithrombotic
drugs such as warfarin and antiplatelet agents.

4 Results and discussion

Scattering coefficients. Fig. 2 shows the linear S1 (left)
and nonlinear S2 (right, for j1 = 10) scattering coeffi-
cients for patients that did (red crosses) and did not (blue
circles) develop ischemic strokes. S1 is remarkably sim-
ilar for both classes and thus unsuitable for discrimina-
tion. In contrast, S2 shows significant differences be-
tween the classes for several values of j1 and j2. Fig. 2
(right) shows the particular case for j1 = 10, where co-
efficients S2(10, j2) are clearly able to discriminate be-
tween classes. Notably, patients that developed IS show
smaller values for S2, indicating that their heart rate dy-
namics are characterized by less nonlinear variability.

It is worth noticing that, interestingly, S1 reproduces
the spectral behavior documented in [2]: the existence of
two scaling regimes, for j ∈ [2, 8] and j ∈ [9, 13]. The
cutoff scale is jc = 8 ≈ 2 min, also in agreement with
findings in [2, 6]. The loss of scaling for j1 < 2 is due to
the effects of the interpolation and digitalization, which
are limited to fine scales.
Statistical analysis. To assess the ability of scattering
coefficients to distinguish between the two classes, we
performed individual Wilcoxon ranksum tests on each
log2 S1(j1), for all j1, and each log2 S2(j1, j2), for all
j1 and j2. Further, we grouped significant neighboring
coefficients at contiguous scales j2 for fixed j1. The
scales j1 and j2 involved in these groups are indicated in
Table 1. We averaged all (log-transformed) coefficients
in such groups to obtain discriminant statistics, and per-
formed Wilcoxon ranksum tests on these groups as well.

Table 1 reports the p-values (for the sake of space, only
the significant groups are shown). Further, Fig. 3 shows
boxplots for each group and class. It can be seen that
statistically significant differences can be found on the
second-order coefficients computed from a wide range of
time scales 2j1 (ranging from ≈ 2 s for j1 = 2, to ≈ 512
s for j1 = 10).

Note that group SG4 is related to the dynamics of
RR intervals in the ultra low frequency range (including
time scales larger than 8.5 min). However, groups SG1,

Table 1: Definition of groups and p-values.
Group j1 j2 p-value
SG1 2 (2 s) [5, 7] ([16 s , 1 min ]) 0.039
SG2 3 (4 s) [5, 8] ([16 s , 2 min ]) 0.048
SG3 4 (8 s) [5, 8] ([16 s , 2 min ]) 0.005
SG4 10 (8.5 m) [11, 13] ([17 min , 1 h ]) 0.022
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Figure 3: Boxplots of the four groups of scattering co-
efficients, for patients that did (IS) and did not (no IS)
develop an ischemic stroke. Outliers above the dashed
line are not displayed.

SG2 and SG3 indicate that scattering coefficients are also
found to be significant at smaller time scales, ranging
from ≈ 2 s (j1 = 2) to ≈ 2 min. Notably, scattering
coefficients are not found to be significant in the very low
frequency range, where multiscale entropy was found to
be significant in [6].
Correlation. Table 2 shows the Spearman correlation co-
efficients between each pair of groups. For comparison
purposes, multiscale entropy in the very low frequency
range (MeanEnVLF, denoted for brevity as EN), proposed
in [6], is also included. It can be seen that all groups show
very weak correlations. This suggests that all groups
measure different aspects of the RR dynamics and pro-
vide complementary information. Further, all groups are
uncorrelated with EN, which can be expected from the
fact that they are computed at different time scales.
Predictive performance. To assess the power of scat-
tering coefficients to predict the occurrence of ischemic
strokes, we performed Receiver Operating Characteris-
tic (ROC) analyses on all groups. For comparison pur-
poses, we also analyzed EN and the CHA2DS2-VASc
score (CHA), as in [6].

Fig. 4 (top) shows the C-statistics for EN, CHA and
the four groups of scattering coefficients. It can be seen
that, despite an overall modest performance, groups SG3
and SG4, as well as EN, provide a better predictive power
than the standard CHA2DS2-VASc score.

If the analysis is restricted to patients not receiving
antithrombotic treatment (109 subjects), Fig. 4 (bottom,
left), predictive performance increases dramatically, with
SG4 reaching almost 80%. In contrast, analysis of pa-
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Table 2: Spearman correlation for all scattering group and
multiscale entropy (EN).

SG1 SG2 SG3 SG4 EN
SG1 0.268 0.204 0.053 0.039
SG2 0.188 0.03 0.003
SG3 0.035 0.031
SG4 −0.069

EN CHA SG1 SG2 SG3 SG4
0.5

0.6

0.7

0.8
AUC All

EN CHA SG1 SG2 SG3 SG4
0.5

0.6

0.7

0.8
AUC No AT

EN CHA SG1 SG2 SG3 SG4
0.5

0.6

0.7

0.8
AUC AT

Figure 4: Area under the ROC curve (and 95% confi-
dence intervals computed from 5-fold cross-validation)
for multiscale entropy (EN), CHA2DS2-VASc score
(CHA), and the four groups of scattering coefficients in-
dicated in Table 1. Analysis was performed on all patients
(top), and those that did and did not receive antithrom-
botic treatment (bottom left and right, respectively).

tients under antithrombotic treatment (69 subjects), Fig. 4
(bottom, right), shows that predictive power is poor, and
that CHA2DS2-VASc is actually the best predictor. This
suggests that in these patients the ischemic stroke is ac-
tually not associated with AF. Results in this section sug-
gest the promising value of SG3 and SG4, as well as EN,
as predictors of ischemic stroke, in particular when pa-
tients are not under antithrombotic treatment.

5 Conclusion and future work

In this work, we have made an exploration of the value
of scattering coefficients for the prediction of ischemic
stroke from patients with atrial fibrillation. Results sug-
gest that scattering coefficients have a good discrimi-
nant power, using information from a wide range of time
scales and statistical orders. Further, these groups show
an acceptable predictive performance, in particular when
only patients that are not receiving antithrombotic drugs
are considered. Future work will address the improve-
ment of predictive power by the joint use of all the un-
correlated predictors considered here, with an adequate
machine learning strategy. Moreover, the exploration of
complementary nonlinear features will also be consid-
ered.
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Abstract

There is a fast growing interest in estimating
cardiovascular information using contactless video-
photoplethysmography (vPPG). Nevertheless, an in-
depth validation of time-varying, nonlinear dynamics
of the related pulse rate variability is still missing. To
this extent, in this study we applied inhomogeneous
point-process nonlinear models to assess instan-
taneous measures defined in the time, frequency,
and bispectral domains as estimated through vPPG
and standard ECG. Video recordings were pro-
cessed using our recently proposed method based
on zero-phase component analysis. Experimental
data were gathered from 60 young healthy subjects
(age: 24±3 years) undergoing postural changes
(rest-to-stand maneuver).

Results show that, at a group level, there is an
overall agreement between linear and nonlinear in-
dices computed from ECG and vPPG during resting
state conditions. However, significant differences
were found, especially in the bispectral domain, also
considering data gathered while standing. Although
significant differences exist between cardiovascular
estimates from vPPG and ECG, results can be con-
sidered very promising as instantaneous sympatho-
vagal changes were correctly identified. More re-
search is indeed needed to improve on the precise
estimation of nonlinear sympatho-vagal interactions.

Keywords Contactless video-photoplethysmography,
Heart Rate Variability, Point Process, Nonlinear Analysis,
Bispectrum, Sympatho-vagal balance, ECG.

1 Introduction

Contactless video-photoplethysmography (vPPG)
refers to a non-invasive, optical technique able to re-
motely detect blood volume changes in humans using
ambient light and a consumer-level digital camera. In the
last decade, significant research efforts have been made
to effectively derive cardiovascular information from
vPPG monitoring [1–5].

Prior studies mainly proposed the estimation of pulse
rate and pulse rate variability (PRV) series from video
of subject’s face [1–5, 5, 6], evaluating the agreement be-
tween PRV-derived parameters (defined in the time and

frequency domains) obtained from vPPG data as com-
pared to PPG recordings. Conclusions highlighted very
promising, statistically comparable results during resting
state conditions [1, 2, 6].

Nevertheless, to our knowledge, major shortcomings
of previous studies can be listed as follows: 1) a lim-
ited number of subjects were involved in the validation
process (i.e., <20); 2) time-varying, nonlinear dynamics
of PRV series from vPPG as compared to standard ECG
recordings has not been evaluated yet.

To this extent, we here study instantaneous linear and
nonlinear estimates derived from inhomogeneous point-
process nonlinear models of heartbeat dynamics in a co-
hort of 60 young healthy subjects undergoing postural
changes. More specifically, we assess the instantaneous
features defined in the time domain, as well as measures
derived from the dynamic spectrum and bispectrum of se-
ries of heartbeat events as estimated through vPPG and
standard ECG. In this preliminary evaluation, the com-
parison of such time-varying measures is performed at a
group-wise level considering averaged measures during
resting state and upright positions. Of note, video record-
ings are processed using our recently proposed method
based on zero-phase component analysis, in combination
with a fully-automatic method for detection and tracking
of region of interest located on the forehead, the cheek
and the nose [7].

The use of stochastic point-process models for this
study is justified by multiple reasons: 1) all point-process
linear and nonlinear estimates are defined in the contin-
uous time without the need of interpolation techniques
(e.g., linear, spline, etc.) on the original series [8, 9];
2) the embedded inverse-Gaussian probability structure
of the model takes into account underlying physiological
dynamics of heartbeat generation [8]; 3) Goodness-of-fit
measures are considered to assess the fitting on exper-
imental data [8]; 4) alongside the autoregressive linear
combination of the present and past interbeat intervals,
nonlinear terms are also included according to a Wiener-
Volterra representation [9]; 5) Laguerre filters are used to
retain long-term information and lowest number of model
parameters [9].

Next, a brief description of the video and standard
ECG recordings, along with the experimental procedure
including the derivation of vPPG series, the mathemati-
cal background of point-process models, and experimen-
tal results and conclusions are reported.
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2 Materials and Methods

2.1 Experimental Procedure

A homogeneous group of 60 young healthy volunteers
(29 woman, age: 24±3 mean±std, range 20-34) was re-
cruited for this study. Each subject signed a compre-
hensive, written informed consent. Participants had var-
ious skin types ranging from type II to type IV. Subjects
underwent postural changes to induce sympatho-vagal
changes. They were instructed not to move their head in
order to reduce movement artifacts. During a 5 minutes
resting state session, they were asked to lay on a bed fac-
ing the camera while recording standard ECG. The bed
was positioned in front of the window to have direct sun-
light on subject’s face. After the resting state, subjects
were asked to stand up while the camera was manually
moved to follow their face. During the transition period,
both video and ECG recording were suspended. When
subjects had reached a stable position and the camera was
properly aligned, recordings were restarted for a period of
five minutes.

Video recordings were acquired with a frame-rate of
60 frames-per-second and 8-bits resolution, using a GigE
Sony XCG-C30C camera whose image sensor was 1/3"
color progressive scan with spatial resolution of 659 x
494 pixels. The camera was equipped with 15 mm fixed
focal length lenses (Tamron 25 HB), which were used
to magnify the region occupied by the participant’s face.
The camera was fixed on a tripod. The ECG signal was
sampled at 256 Hz using a FlexComp Infiniti by Thought
Technologies, Inc. device. Electrodes were located on
the thorax.

2.2 Derivation of vPPG and related cardiovascular
series

Three regions of interests (ROI) were considered: fore-
head, nose, and cheek. ROI detections were performed
through the Viola-Jones face detection algorithm [10],
while ROI tracking was obtained by the Lucas-Kanade-
Tomasi motion flow tracking algorithm [11]. In each
ROI, a spatial average of pixels intensity was calculated
for each frame. These time series were firstly detrended
using the technique described in [12], setting the smooth-
ness parameter λ = 400. A hamming bandpass filter
with cut-off frequencies of f1 = 0.1Hz, f2 = 8Hz was
then applied to remove the high frequencies components,
mainly correlated to artificial light, and low frequencies
components, associated to slow subject movements. The
vPPG signal was extracted using the Zero-phase Compo-
nent Analysis method [7]. The detection of PRV from
vPPG was performed on the first derivative of the signal.
Since the detection of the peak was done on the deriva-
tive of vPPG signal, the position of each pulse is located
on the maximum of first derivative, i.e. along the rising
edge of the cardiac pulse (defined as anachrotic phase).
The detection of R peaks in the ECG was automatically
performed by applying the method described in [13]. The
R detections were then visually inspected and the misde-
tected/erroneous beats were corrected.

2.3 Point-Process Model of Heartbeat Dynamics

In this paragraph, we briefly describe the methodolog-
ical background of point-process models of heartbeat dy-
namics, whose details can be found in [8, 9]. Below,
we expose the modeling equations referring to standard
ECG and related R-waves. The same formulation di-
rectly applies for PRV series from vPPG considering the
respective fiducial points indentifying heartbeat events.
We aim to characterize a family of probability density
functions (pdfs) that predict the time of the next heart-
beat event, given timing information of the present and
past events. As mentioned in the Introduction, such pdfs
are known to be physiologically-plausible, continuous
Inverse-Gaussian distributions f(t|Ht, ξ(t)) [8, 9]:

f(t|Ht, ξ(t)) =
[

ξ0(t)

2π(t− uj)3

] 1
2

× exp

{
−1

2

ξ0(t)[t− uj − µRR(t,Ht, ξ(t))]2

µRR(t,Ht, ξ(t))2(t− uj)

}
(1)

with j = Ñ(t) the index of the previous heartbeat
event before time t, {uj}Jj=1 as the ordered set of R-wave
events, and RRj = uj−uj−1 > 0, as the jth R–R in-
terval, Ht = (uj ,RRj ,RRj−1, ...,RRj−M+1), ξ(t) the
vector of the time-varying parameters, and ξ0(t) > 0 the
shape parameter of the inverse Gaussian distribution. The
pdf is parametrized through its first-order moment statis-
tic (mean), µRR(t,Ht, ξ(t)), which is modeled consider-
ing the Laguerre expansions of the Wiener-Volterra ker-
nels up to the second order. This choice of expanding
the kernels reduces the number of unknown parameters
that need be estimated [9]. In addition, the regression
is performed on the derivative RR series, in order to im-
prove the achievement of stationarity within the sliding
time window W = 90 sec [9]. Thus, the obtained Non-
linear Autoregressive with Laguerre expansion model can
be written as:

µRR(t,Ht, ξ(t)) = RRÑ(t)+g0(t)+

p∑
i=0

g1(i, t) li(k)+

q∑
i=0

q∑
j=0

g2(i, j, t) li(k) lj(k) . (2)

where

li(t) =

Ñ(t)∑
n=1

φi(n)(RRÑ(t)−n − RRÑ(t)−n−1) (3)

is the output of the Laguerre filters, with Ñ(t) as a left
continuous function of the related counting process, and

φi(n) = α
n−i
2 (1−α) 1

2

i∑
j=0

(−1)j
(
k

j

)(
i

j

)
αi−j(1−α)j

is the ith-order discrete time orthonormal Laguerre func-
tion, with (n ≥ 0) and α the discrete-time Laguerre pa-
rameter. Importantly, the instantaneous variance is:

σ2
RR(t,Ht, ξ(t)) = µ3

RR(t)/ξ0(t). (4)
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We use the Newton-Raphson procedure to maximize
the local log-likelihood defined in [8] in order to esti-
mate the unknown time-varying parameter set ξ(t) =
[ξ0(t), g0(t), g1(0, t), ..., g1(p, t), g2(0, 0, t), ..., g2(i, j, t)].
The optimal order {p, q} is estimated by means of the
point process model goodness-of-fit applied to a subset
of the data [8]. Model goodness-of-fit is based on
the Kolmogorov-Smirnov (KS) test and associated KS
statistics [8]. Autocorrelation plots are also considered
to test the independence of the model-transformed
intervals [8]. Once the model’s parameters are derived,
a few additional steps are required to calculate the
quantitative tools, i.e. the instantaneous autospectrum
and bispectrum: 1) from the fitted coefficients gn(...)
of eq. (2), use the Laguerre deconvolution to obtain
the Wiener-Volterra kernels γn(...); 2) from γn(...)
compute the Fourier transforms of the symmetric kernels
derived from γn(...); 3) compute the Wiener-Volterra
Input-Output kernels [9]; 4) compute the autospectrum
Q(t, f) and autobispectrum Bis(f1, f2, t). By integrat-
ing Q(t, f) in each frequency band, we can compute
the instantaneous index within the low frequency (LF =
0.05-0.15 Hz) and high frequency (HF = 0.15-0.5 Hz)
ranges, along with their ratio (LF/HF).

Through bispectral analysis it is possible to further
evaluate the nonlinerar sympatho-vagal interactions by
integrating |Bis(f1, f2, t)| in the appropriate frequency
bands. Specifically, we evaluate:

LL(t) =

0.15ˆ

f1=0+

0.15ˆ

f2=0+

Bis(f1, f2, t)df1df2 (5)

LH(t) =

0.15ˆ

f1=0+

0.4ˆ

f2=0.15+

Bis(f1, f2, t)df1df2 (6)

HH(t) =

0.4ˆ

f1=0.15+

0.4ˆ

f2=0.15+

Bis(f1, f2, t)df1df2 (7)

3 Statistical Analysis and Results

All features were calculated instantaneously with a
5ms temporal resolution. For each subject and for every
feature X , as an exploratory/preliminary step, we con-
densed the information about the time-varying dynamics
of X through its median value. On both resting and stand
conditions, we then compared data from vPPG and ECG
using non-parametric statistics (Mann-Whitney test) un-
der the null hypothesis that the between-subject medians
of the two groups are equal.

In this study, point-process analyses yielded optimal
orders of 3 ≤ p ≤ 5 and 1 ≤ q ≤ 2. KS distances
were as low as 0.0434±0.0112 for resting state data, and
0.0419±0.0107, ensuring that our models well-predicted
all series of heartbeat events. Visual inspection analysis
ensured that more than 98% of autocorrelation plot sam-
ples were within 95% boundaries.

Averaged instantaneous series from all subjects are
shown in Figs. 1 and 2.

Res
t	  

Mu	  

Sta
nd	  

LF/HF	  

Sta
nd	  

Res
t	  

Figure 1: Instantaneous µRR(t) and LF statistics from
ECG (left panels) and vPPG (right panels) averaged along
all subjects, showing Median(X)±MAD(X).

LL	  

Sta
nd	  

Res
t	  

HH	  

Sta
nd	  

Res
t	  

Figure 2: Instantaneous bispectral statistics from ECG
(left panels) and vPPG (right panels) averaged along all
subjects, showing Median(X)±MAD(X).

Results of group-wise statistics are shown in Table 1.
Considering data from resting state sessions, no signifi-
cant differences were found between features estimated
from ECG and vPPG in all indices but LH (p < 0.03).
Considering data from standing, significant differences
were found between features from ECG and vPPG in
σRR (p < 0.001), HF (p < 0.005), LF/HF (p < 0.0001),
LL and LH (p < 0.003).

4 Conclusions
Using inhomogeneous point-process nonlinear mod-

els, we studied cardiovascular dynamics estimated
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Table 1: Results of the comparison between ECG- and
vPPG-derived features on the rest-stand data.

Feature Session from ECG from vPPG p-val

µRR

Rest 865.74±101.10 864.77±104.38 0.985

Stand 710.30±77.14 709.41±75.74 0.985

σRR

Rest 742.57±396.85 931.96±431.81 0.130

Stand 346.96±199.65 846.15±445.72 9.5e-7

LF
Rest 545.96±299.19 502.82±277.58 0.768

Stand 576.30±352.77 549.76±336.42 0.444

HF
Rest 456.57±265.84 376.45±184.45 0.780

Stand 136.93±95.52 217.39±135.11 0.004

LF/HF
Rest 1.01±0.49 1.10±0.51 0.657

Stand 6.23±4.44 2.00±1.19 1.6e-5

LL
Rest (77.25±61.13)106 (46.31±30.44)106 0.071

Stand (120.41±91.76)106 (26.14±18.58)106 2.5e-8

LH
Rest (231.69±127.52)106 (150.81±95.37)106 0.024

Stand (127.98±97.37)106 (55.72±37.89)106 0.002

HH
Rest (841.54±685.51)106 (593.94±491.44)106 0.093

Stand (176.83±132.58)106 (141.49±100.12)106 0.932
Values are expressed as Median(X) ± MAD(X) among subjects.
p-values are from Mann-Whitney tests between vPPG and ECG data.

Lines in bold indicate a significant difference with p < 0.05.

from contactless video-photoplethysmography (vPPG) as
compared to standard ECG. Specifically, we investigated
time-varying, linear and nonlinear dynamics through
measures defined in the time (instantaneous mean and
standard deviation) and frequency domains (instanta-
neous power from dynamical spectrum), as well as non-
linear estimates from dynamical bispectra (instantaneous
nonlinear sympatho-vagal interactions). The experimen-
tal setup foresaw postural changes to induce sympatho-
vagal changes. As a preliminary investigation, we con-
densed the time-varying information of each feature
through its median value. Results are very promising.
Although during standing conditions the degree of agree-
ment is low, especially considering features defined in
the frequency and bispectral domains, at a group-wise
level we found an overall agreement between estimates
from vPPG and ECG considering linear and nonlinear
dynamics during resting state conditions (though with a
significant difference in LH). Our results also suggest that
our methodology for deriving vPPG from video recording
can be considered effective with a wide range of lighting
and movement conditions. During resting state, in fact,
subjects were lying supine on a bed with minimal move-
ment artifacts. Further research will be focused on im-
proving space and time resolution, inter-subject reliabil-
ity, and robustness in face tracking under real-world ex-
treme conditions (e.g. low light, high movement). Future
validation studies will focus on investigating feature vari-
ability of the subject time-varying dynamics, along with
the study of further indices of instantaneous cardiovascu-
lar dynamics defined within the point-process framework.
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Abstract

Detrended fluctuation analysis (DFA) has become
a standard technique for quantifying long-range cor-
relation and fractal scaling behavior observed in
physiological time series. However, we have re-
cently shown that the DFA detrending procedure
using piecewise least-squares fitting results in the
nonuniformly weighted estimation of the root-mean-
square deviation, and that this property could cause
an increase in the estimation error. As a better DFA
variant, centered detrending moving average (DMA)
analysis has been suggested. Recently, we have
shown the equivalence between the detrending op-
eration in the centered DMA and the Savitzky–
Golay filter, and developed a fast algorithm for the
Savitzky–Golay filter-based scaling analysis. In this
paper, we further provide solid mathematical foun-
dations for this methodology. In addition, through
the analysis of physiological time series available
from PhysioNet, we investigate the performance of
the Savitzky–Golay filter-based analysis.

Keywords Long-range correlation, Fractal scaling,
Gait dynamics, Heart rate variability

1 Introduction
Long-range correlations have been observed in a wide

variety of physiological and biomedical time series [1, 2].
The importance of characterizing the long-range correla-
tion in such time series would be underscored by studies
demonstrating that its alteration is associated with a dis-
ease state and higher mortality risk [3–5]. Thus, reliable
characterization of the long-range correlation is an im-
portant task.

To achieve reliable detection of long-range correlation,
it is important to distinguish deterministic trends from the
long-range correlation intrinsic in the stochastic dynam-
ics. To remove or attenuate the adverse effect caused by
the deterministic trend, a random-walk analysis method
employing detrending techniques, called detrended fluc-
tuation analysis (DFA), was developed by Peng et al.
[6, 7], and has since become one of the most widely
used methods in physiological and biomedical fields [8–
12]. In this method, ana priori unknown trend embed-
ded in the time series is eliminated via piecewise least-
squares polynomial fitting. However, it is recently shown
that the DFA detrending procedure results in the nonuni-

formly weighted estimation of the root-mean-square de-
viation, and that this property could cause an increase in
the estimation error [13]. In contrast, centered detrending
moving average (DMA) analysis using a moving polyno-
mial filter has been recognized as a better DFA variant
[13–16]. This method has better estimation properties
than DFA, such as uniformity of the root-mean-square
deviation estimation and zero phase shift for all frequen-
cies. Recently, we have shown the equivalence between
the detrending operation in the centered DMA and the
Savitzky–Golay filter, and developed a fast algorithm
for the Savitzky–Golay filter-based scaling analysis [14].
Therefore, we refer to centered DMA as Savitzky–Golay
filter-based DFA (SG-DFA). In this paper, we further pro-
vide solid mathematical foundations for this methodol-
ogy. In addition, through the analysis of stride interval
time series and heart rate variability available from Phys-
ioNet, we investigate the performance of the SG-DFA.

2 Savitzky–Golay filter-based detrended
fluctuation analysis

In this section, we briefly review SG-DFA (or equiv-
alently centered DMA) and provide its fundamental
properties [14–16]. In SG-DFA, instead of the piece-
wise least-squares fitting used in the standard DFA, the
Savitzky–Golay filter is employed [17]. The procedure of
the SG-DFA is the following: 1) To analyze time series
{x[i]}N−1

i=0 displaying long-range correlation and non-
diffusive behavior, we first integrate the observed time
series,y[i] =

∑i−1
j=0 (x[j]− x ), wherex is thesample

mean of{x[i]}, and analyze{y[i]}. 2) The trend compo-
nent{ỹn[i]} embedded in the observed time series{y[i]}
at each scalen is estimated by a Savitzky–Golay filter
with lengthn and polynomial orderm, wherem is an
even number [17]. This filter locally smooths a time se-
ries by fitting anmth polynomial of orderm to a sliding
window. This operation can be effectively achieved by
a linear convolution with a set of pre-computed coeffi-
cients (see Figure 1). Namely, the detrending operation
is described by

y[i]− ỹn[i] = y[i]−
(n−1)/2∑

j=−(n−1)/2

cj yl[i+ j] (1)

In Eq. (1),cj are given by

cj =

m/2∑
k=0

b1,2k+1(n) j
2k, (2)
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Figure 1:Illustration of coefficients of a Savitzky–Golay (SG) filter. The detrending operation of SG-DFA is described by
y[i]−

∑
j cj yl[i+ j]. (a) Zeroth order SG filter (centered moving average). (b) Second order SG filter. (c) Fourth order

SG filter. Themth order SG filter can remove up to(m+ 1)th order polynomial trend embedded in{y[i]}.

Figure 2:Frequency responses
∣∣Hn

(
ei2πf

)∣∣ of SG-DFA
(red) and DFA (blue) whenn = 99. (a) Comparison
between zeroth-order SG-DFA and first-order DFA. (b)
Comparison between second-order SG-DFA and third-
order DFA.

wherebi,j(n) are elements of the(m + 1) × (m + 1)
matrixB−1

m (n), andB−1
m (n) is the inverse matrix of

Bm(n) =

(n−1)/2∑
j=−(n−1)/2


1 0 · · · jm

0 j2 · · · 0
...

...
.. .

...
jm 0 · · · j2m

 . (3)

3) Using the detrend profiles{y[i]− ỹn[i]}, the estima-
tor of the root-mean-square deviation, called fluctuation
function, is defined as

F (n) =

 1

N − n+ 1

N−(n−1)/2∑
i=1+(n−1)/2

(
y[i]− ỹn[i]

)2

1/2

,

(4)
whereN is the data length. 4) Steps 2 and 3 are repeated
over multiple time scales to characterize the relationship
betweenF (n) andn. A linear relationship on a log-log
plot of F (n) as function ofn indicates the power-law
scaling range, in which the fluctuations can be charac-
terized by a scaling exponentα, the slope of the linear
relation betweenlogF (n) and log n. To carry out the
SG-DFA procedure, we have recently developed a fast
algorithm [14]. In this paper, we employ this algorithm.

2.1 Fundamental properties of SG-DFA
Based on analytical approaches, we can show the fol-

lowing fundamental properties of SG-DFA (note that here
m is an even number) [14, 15]: (1)mth order SG-DFA
is equivalent to(m + 1)th order one; (2)mth order SG-
DFA can remove up tomth order polynomial trend in the
original time series before integration; and (3) the upper
limit of the detectable scaling exponentα by mth order
SG-DFA ism + 2. These facts indicate that the perfor-
mance ofmth order SG-DFA is comparable with that of
(m+ 1)th order standard DFA.

In DFA and its variants, the detrending operation gen-
erally acts as a high pass filter [16]. In the case of SG-
DFA, including higher-order ones, detrending operations
are described by a linear convolution. Therefore, its fre-
quency response can be analytically calculated using con-
ventional linear analysis techniques. For instance, fre-
quency response functions of detrending operations in ze-
roth and second-order SG-DFA are given respectively by

Hn (f) = 1− sin(πnf)

n sin(πf)
, (5)

and

Hn (f) = 1 +
1

2n3 − 8n

{
3
(
n2 + 5n+ 6

)
sin(πnf)

sin(πf)

+
(15n+ 30) cos(π(n+ 1)f)

sin2(πf)
− 15 sin(π(n+ 2)f)

sin3(πf)

}
.

(6)

Thesefrequency responses (gains) are illustrated in Fig-
ure 2, together with the pseudo-frequency responses of
DFA [16]. BecauseHn (f) of the SG-DFA detrending
operation is a real positive function, this filter has zero
phase shift for all frequencies. In contrast, the DFA
detrending operation generates unnecessary higher fre-
quency components and heterogeneous phase shift of the
detrended profile because of nonlinearity of the detrend-
ing filter [13]. As will be shown, these properties result
in instability of the scaling estimation.

In addition, it should be emphasized that the cutoff fre-
quency of the DFA detrending operation has not been
appropriately adjusted from the perspective of filter de-
sign. Therefore, a distortion of the relationship between
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Table 1: Analytically calculatedrc for DFA and SG-
DFA.

order DFA SG-DMA

zeroth
√
3

√
6

first
√
3 4
√
5

√
6

second 6
√
7 3
√
15 23/4 4

√
35

third
√
3 4
√
35 23/4 4

√
35

fourth 33/5 10
√
11 5

√
35 22/3

√
3 6
√
77

fifth
√
3 12
√
13 6

√
385 22/3

√
3 6
√
77

Table2: Group means ofσ∆ for SG-DFA and DFA. For
stride interval time series,σ∆ was estimated over101 ≤
n ≤ 102, and for HRV, over103 ≤ n ≤ 104.

order stride interval (n= 10) HRV (n = 54)

SG-DFA0 0.016 0.004

DFA1 0.044 0.080

SG-DFA2 0.011 0.004

DFA3 0.030 0.032

SG-DFA4 0.015 0.006

DFA5 0.026 0.021

the timeand frequency scales is always observed. In stan-
dard DFA and SG-DFA, whenn is large enough, the cut-
off frequency is approximately given by

fc(n) ≈
rc
πn

, (7)

whererc is a constant. Analytically calculatedrc are
summarized in Table 2. To reduce the scale distortion,
we define the standardized time scale asñ = n/rc and
study the scaling relation betweenF (ñ) andñ.

3 Application of SG-DFA

3.1 Methods
To test the performance of SG-DFA, we analyze phys-

iological time series available from PhysioNet using con-
ventional DFA up to the fifth order and SG-DFA up to
the fourth order. We study two data sets: (1) Stride inter-
val time series derived from 10 young, healthy men (ages
18-29 yrs); (2) Heart rate variability (RR-interval) time
series derived from 54 healthy subjects (ages 28-76 yrs).

As a quantitative parameter to characterize the estima-
tion instability observed inlog10 F (ñ), we calculate the
standard deviation of the increments oflog10 F (ñ) over
the range ofN1 ≤ n ≤ N2, whereN is the data length,
and the analyzed scales are integers nearest to the geo-
metric progression with a common ratio of21/8. This
parameter is denoted byσ∆.

Figure 3: SG-DFA and DFA results using the standard-
ized time scalẽn. (a) Results of stride interval time series.
(b) Results of heart rate variability time series. From top
to bottom, the SG-DFA orders are 0, 2, and 4; the DFA
orders are 1, 3, and 5.

3.2 Results

Figure 3 shows representative results as obtained by
DFA and SG-DFA. The DFA results exhibited somewhat
irregular behavior in comparison with the corresponding
SG-DFA results. Specially, in relatively large scales, ir-
regularity ofF (n) estimated by DFA was observed. This
irregularity was well characterized byσ∆. As shown in
Table 2, a better stability was achieved by SG-DFA.

4 Conclusions

We have provided solid mathematical foundations of
SG-DFA based on analytical arguments. In addition,
through the analysis of physiological time series, we have
demonstrated a better stability in the estimatedF (n) by
SG-DFA than conventional DFA.

To date, the performance of DFA has been systemat-
ically studied [18–21], and DFA has become a widely
used method. In comparison, studies using SG-DFA are
rare. Our results could help further systematic study of
the performance of SG-DFA, and facilitate increasingly
widespread application of SG-DFA.
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Abstract 

In this study, an electrically conductive polymer 
was screen-printed onto a synthetic fabric for ECG 
measurement. This approach presents an easy 
fabrication process and produces high-fidelity ECG 
waveforms. This metal-free approach is superior to 
Ag/AgCl electrodes which use electrogels that can 
cause skin irritation.  The conductive polymer is 
safe for prolonged exposure to the body. We found 
comparable performance of the synthetic fabric 
electrodes to the Ag/AgCl electrodes in obtaining 
all morphological features of an ECG waveform. 
However, the ECG amplitudes were found to be 
greater with the conducting fabric electrodes. The 
proposed conductive, dry and flexible textile 
electrodes can be easily incorporated into 
garments and have the potential to be used for 
multimodal bio-signal monitoring applications. 

Keywords PEDOT-PSS, carbon electrodes, 
electrocardiogram, wearable devices

1 Introduction 

Wearable devices are one of the fastest-emerging 
areas for unobtrusive continuous monitoring of 
physiological data.  Wearable devices consist of 
electronic materials that can be easily integrated into 
textiles and designed in various form factors so that they 
can be worn comfortably. One of the key applications of 
such wearables is electrocardiogram (ECG) monitoring. 
The ECG is an oft-measured vital sign for analyzing 
physiological conditions of the heart, thus, many 
wearables incorporate ECG sensors.  With the rising 
global diabetic epidemic and an aging human 
population, there is a growing need for continuous 
monitoring of cardiovascular activity especially in 
patients with high risk of malignant arrhythmia.  

Ag/AgCl-based electrodes are the gold standard for 
measuring ECG.  Ag/AgCl electrodes are used with a 
hydrogel which facilitates better electron charge transfer 
between skin and electrode. However, hydrogels tend to 
dry out in a few days and cannot be used for long-term 
monitoring via a wearable monitoring system.  Silver-

coated dry (no hydrogel) conductive textile electrodes 
have been widely used for monitoring ECG signals [1]–
[4] and are also incorporated into garments [5], [6] as a
wearable system. These dry electrodes have been shown
to exhibit low impedance and do not cause skin
irritation. However, the silver-based dry conductive
textiles are expensive and one of their major limitations
is that they need to be wetted prior to use to obtain high
fidelity ECG signals. Carbon-based conductive
electrodes have emerged in recent years as a more
economical alternative to silver electrodes [7]–[11].
These electrodes are easy to construct, reusable, and
provide high-fidelity ECG signals in both dry and water
immersion conditions. However, the carbon-based
electrodes have some rigidity, thus, may not be the best
form factor for integration in all wearable devices or
garments.

Conductive polymers such as polyaniline, 
polypyrrole and polythiophenes offer alternative options 
for incorporation into textiles. Some of these polymers 
are commercially sold as a colloidal suspension in water 
with low solid content. These polymers can be cast onto 
any substrate including textiles, glass, and silicon wafers 
[12]. Typical coating processes involve spin coating, 
spray coating, tape casting, brush printing, screen 
printing and roller printing. Conductive polymers have 
been reported to be bio-compatible [13] and maintain 
their conductivity even when stretched (e.g. when 
incorporated into stretchable fabrics ) [14]. 

ECG monitoring applications using conducting polymer 
composites have been reported [15], but the fabric is 
usually soaked in the conducting polymer solution. 
However, for this study, the conductive polymer is 
delivered and immobilized onto synthetic fabric using a 
printing technique. In this study, we introduce screen-
printed conductive polymer fabric electrodes and 
evaluate their performance by comparing ECG signal 
quality with that of Ag/AgCl electrodes.  

2 Methods 

A. Materials and Preparation of Samples
An aqueous solution of PEDOT-PSS (1% w/w

solution) was used for coating the conducting layer. 
Dimethyl sulfoxide (DMSO) was obtained from Sigma 
Aldrich and was used as received. Commercially 
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available synthetic leather was used as the substrate for 
printing. The solution for screen printing was prepared 
by mixing PEDOT-PSS with 5% DMSO followed by 
concentrating the solution to the appropriate viscosity. 
This solution was screen printed onto fabrics and dried 
at 110 °C for 1 hr. The coated fabrics were then used as 
electrodes for ECG measurement. 

B. Experimental Protocol for ECG Measurement 
Eight (N = 8) healthy male volunteers of ages 

ranging from 24 to 41 years (mean ± standard deviation 
30.22 ± 5.53), weight 73.44 ± 11.95 kg, height 174.97 ± 
4.94 cm, and body mass index (BMI) 24.04 ± 4.06 were 
enrolled in this study. The study was approved by the 
Institutional Review Board of the University of 
Connecticut, CT, USA, and all volunteers consented to 
be subjects for the experiment. 

We designed and fabricated two different ECG 
monitoring devices, one with the new electrodes and one 
with conventional Ag/AgCl electrodes, so that we could 
simultaneously measure single lead ECG signals. Each 
ECG circuit obtained a Lead I signal from the chest via 
two electrodes with a virtual right-leg driven circuit. 
This device provided a 3 dB cutoff from 0.05 to 150 Hz 
with the use of a second-order band-pass filter, and a 
sampling rate of 360 Hz. The filtered analog ECG 
signals were converted to digital data by using a 12-bit 
analog-to-digital converter (ADC) embedded in a micro-
controller (MSP430F2618, Texas Instruments, TX, 
USA). A 6-point moving average notch filter was 
applied to the ECG signals for 60 Hz power noise 
rejection. The ECG signals were transmitted to a 
personal computer via Bluetooth wireless 
communication. A LabVIEW software (National 
Instruments, TX, USA) graphic user interface software 
was developed for real-time display, and data storage for 
further off-line data analysis. 

The conductive synthetic fabric electrodes are shown 
in Fig. 1. We used Ag/AgCl snap fasteners to connect 
leads to the ECG device, and an elastic chest strap was 
used to immobilize the electrodes onto a subject’s chest. 
For both types of electrodes, we first had the subject rub 
a small amount of lotion onto the area where the 
electrodes were going to be placed.  This was due to the 
prevalence of dry skin, to improve conductivity for both 
electrode types. The chest strap was placed with one 
electrode on the left and the other electrode on the right 
side of the rib cage. Each experiment lasted 2 minutes in 
the sitting position and subjects were instructed to 
remain relaxed during experiments. 

 

Figure 1. Conducting synthetic fabric electrodes on 
leather showing the front (right) and back (left) sides of 
the electrodes. 

C. Signal Processing 
We chose a 30-second ECG segment, containing 

stable data. First, the acquired ECG data were filtered 
with a 4th-order Butterworth bandpass filter with the 
cutoff bandwidth between 0.1 to 40 Hz. A non-local 
mean filtering algorithm as a secondary filtering step 
was applied offline in order to minimize the high 
frequency noise observed in the collected data [10], [16], 
[17].  

After filtering, R-wave peak detection was 
performed on  the selected ECG segments using a robust  
QRS  complex  detection  algorithm [18], [19].  ECG 
templates were computed for each selected ECG 
segment by creating an ensemble matrix with the 
corresponding ECG cycles aligned with respect to their 
R-peak locations, and then averaged at each time instant 
[10]. We compared ECG amplitude using peak-to-peak 
value in each ECG template and calculated cross 
correlation indices of ECG templates between Ag/AgCl 
and the conducting fabric electrodes. 

 
Figure 2. Collected unfiltered ECG signals using 
Ag/AgCl electrodes (top panel) and conducting fabric 
electrodes (bottom panel). 

 

3 Results 

Comparison of ECG Signal Quality 
Fig. 2 and Fig. 3 show representative data from a 

subject. Amplitude values of the unfiltered ECG signal 
in Fig. 2 are represented as analog-to-digital conversion 
values which ranged between 0 and 4096.  
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TABLE I. EVALUATION OF ECG SIGNAL QUALITY 
(N = 8); * DENOTES STATISTICAL SIGNIFICANCE 

 
Ag/AgCl 
electrode 

PEDOT-PSS 
based fabric 

sensor 
Amplitude (a.u.) 

(mean ± sd) 412.00 ± 192.40 460.68 ± 
163.87* 

Correlation Coeff. 
(mean ± sd) 0.99 ± 0.02 

 

 
Figure 3. ECG beat ensembles (left panels) and the 
averaged templates (right panels). 
 

 As shown in the right panels of Fig. 3, we observe 
that the ECG template signal collected using conductive 
fabric sensors exhibit similar waveform morphologies as 
those collected by Ag/AgCl electrodes.  For ECG 
amplitude comparison, as shown in Table I, the mean 
amplitude of ECG signals collected by conducting fabric 
electrodes was significantly greater than for Ag/AgCl 
electrodes. 

Fig. 3 shows the ECG beat ensembles and the averaged 
templates computed for both types of electrodes. All 
ECG morphologies are well captured and delineated for 
the conducting fabric electrodes.  Cross-correlation test 
results are shown in Table I to quantitatively assess if 
there were any differences in ECG morphological 
waveforms between the two types of electrodes.  Note 
the high correlation value between the two types of 
electrodes. 

 

4 Conclusions  

In this study, conductive fabric electrodes were 
developed using synthetic fabric. A conducting polymer 
solution of appropriate viscosity was laid onto a fabric 
using a screen printing coating technique. 

As shown in Fig. 3, we confirmed that conducting 
fabric sensors showed similar performance in capturing 

all ECG morphologies when compared with Ag/AgCl 
electrodes. However, we found the signal amplitudes of 
our conducting fabric sensors to be greater than 
Ag/AgCl electrodes. This is because the resistance of 
conducting fabric sensors is smaller than Ag/AgCl 
electrodes.  Note, however, as shown in Fig. 2 and Fig. 
3, we found that the ECG signal from our conducting 
fabric electrodes showed noisier data when compared to 
Ag/AgCl electrodes. We believe this is not due to the 
electrode itself but because it was not fully integrated 
into the wearable chest strap.   

Previous works have reported using the screen 
printing technique with PEDOT for electrode 
development [20]–[22], but the main advantage of our 
electrode is that it maintains the conductivity even after 
more than five washing cycles. To design and fabricate 
wearable sensors, we need to consider the best 
approaches for incorporating these sensors into 
garments, and the connection of these sensors to the 
input terminals of a biometric device.  Conducting 
polymers can be cast on any substrate including textiles, 
glass and silicon wafers, and can be shaped in many 
forms and sizes.  

In conclusion, we developed a conductive fabric 
electrode using a screen printing technique for ECG 
measurements using wearable devices. The electrodes 
can potentially also be used to collect other bio-signals 
such as electromyogram (EMG) and bio-impedance 
measurements.  The screen printing capability of the 
sensor enables scale-up possibility with possible roll-to-
roll manufacturing processes. 
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Abstract 

The left ventricular end-diastolic volume (EDV) 
can be used for physiological control in patients with 
a ventricular assist device. Such a long-term, real-
time, robust signal is not available yet. End-diastolic 
pressure (EDP) and the R-wave magnitude (RWM) 
of the electrocardiogram can be acquired in vivo 
and can relate to the EDV through a power and a 
linear model, respectively, as proposed in literature. 
The analysis of in-vivo data acquired in three pigs 
during volume variations allowed us to quantify the 
accuracy of estimating EDV from EDP and RWM. 
The averaged root-mean square error for EDP and 
RWM derived volumes are 3.22 mL and 4.77 mL, 
respectively. The order of magnitude is comparable 
to and lower than the allowable relative sensor error 
required for control. Furthermore, we observed 
considerable intra- and inter-animal variability. 
Therefore, a calibration of the models is necessary 
for every patient and needs to be repeated over 
time. We conclude that an equivalent estimate of 
EDV can be achieved by using either EDP or RWM 
as a measurement quantity. Thus, to the use of the 
RWM as an input is a new and promising approach 
for LVAD control.   

Keywords ECG, end-diastolic volume, left ventricular 

assist devices, preload, R-wave magnitude 

1 Introduction 

Left ventricular assist devices (LVADs) are implanted 

in patients with end-stage heart failure [1]. LVADs are 

blood pumps operating in parallel to the diseased heart to 

ensure a sufficient perfusion of the body. Nowadays, 

LVADs are passive devices that do not adapt to the 

physiological requirements of the patient. Physiological 

adaptation aims to overcome this problem by an 

automatic adaptation of the pump speed. Our group has 

developed a robust preload sensitive feedback controller 

that is to adapt to the physiological requirements by 

relying on the left ventricular end-diastolic volume 

(EDV) [2]. However, to date no long-term, real-time, 

robust left ventricular volume sensor is available. 

Requirements for a volume sensor for VAD control are 

high. From a technical perspective, such a sensor needs 

to be long-term biocompatible and stable, easy to 

miniaturize and requiring very little energy. In a previous 

unpublished study, we could show that from a control 

perspective the sensor must provide an accurate and 

robust left ventricular volume (LVV) signal with a 

relative error of < 20%. The signal must be robustly 

reliable for LVAD patients with various underlying 

diseases, with different anatomy and pathophysiology. 

Lastly, the sensor must be insensitive to a sudden change 

of hematocrit due to bleeding and arrhythmia or long-

term recovery effects like reverse remodeling. 

Currently, the measurement of EDV is of interest in the 

clinic as well as in research to monitor the cardiac 

performance. In the clinic, the EDV is measured by 

echocardiography or magnetic resonance imaging 

systems requiring computationally expensive post 

processing. In research, admittance catheters are often 

used for short-term, real-time volume measurements in 

patients [3], or intensively for pressure-volume loop 

analysis in animals [4]. Sonomicrometry represents an 

accurate multidimensional measurement system for 

volume; however, the invasive nature of the deployment 

limits the application in humans [5]. In summary, the 

existing systems are either too large and not real-time 

capable or too invasive to be used in patients.  

Pressure sensors and intracardiac electrocardiogram 

(ECG) electrodes offer the possibility to acquire long-

term, real-time signals of LVAD patients. FDA-

approved pressure sensors as well as ECG electrodes in 

pacemakers have been integrated in commercial systems 

to be operated in vivo. They are small, biocompatible, 

easy to integrate and have low power consumption. 

Models to estimate EDV from these signals have been 

proposed in literature, but have never been consistently 

compared.  

In this study, we want to investigate and compare how 

accurately and robustly we can estimate EDV from the 

end-diastolic pressure (EDVEDP) or from the R-wave 

magnitude (EDVRWM) of the ECG signal. For this 

purpose, we acquired left ventricular pressure (LVP), 

intracardiac ECG and reference volume (EDVREF) data 

in three pigs.  

2 Methods 

2.1 End-diastolic Pressure Model 

EDP and EDV are related through the end-diastolic 

pressure-volume relationship (EDPVR). The EDPVR is 

important to discuss medical conditions of patients in 

terms of the diastolic function [6]. We modeled the 

relationship based on a power model investigated by 

Klotz et al. [7]. The original equation was inverted to 

compute the EDVEDP as output (1), i.e., our pressure-

volume curves are mirrored with respect to the 

conventional representation.  
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𝐸𝐷𝑉𝐸𝐷𝑃 = 𝑎1 (
𝐸𝐷𝑃

𝐴
)1/𝐵 + 𝑏1    (1) 

The power model has four parameters, namely A, B, a1 

and b1. The former parameters were assessed in vivo and 

were proven to be constant in mice, dogs and humans: A 

= 22.8 mmHg and B = 2.79 [7]. We successfully applied 

the same parameters to pigs in this study. The remaining 

parameters a1 and b1 are patient-specific and correspond 

to a stretching of the power curve and an offset. The 

parameter a1 is inversely related to the diastolic 

myocardial compliance, while the offset b1 represents the 

volume at the pressure of 0 mmHg. As the parameters a1 

and b1 are patient-specific and can change over the long-

term, they need to be calibrated.  

2.2 ECG R-wave Magnitude Model 

R-wave magnitude (RWM) and EDV relate through 

the so-called Brody effect. An increase of preload, 

equivalent to EDV, coincides with a decrease of the 

RWM in the QRS complex of the ECG signal [8]. Recent 

experiments in pigs have shown a statistically significant 

correlation of RWM with respiratory pulse pressure, 

which is a third equivalent measure for preload [9]. 

Furthermore, LVAD speed changes in ten pigs proved a 

statistically significant linear correlation of EDV with 

RWM [10]. The authors propose to use the EDVRWM for 

monitoring LVAD patient volume status. We use this 

linear model to represent the relationship between RWM 

and EDVRWM (2). 

𝐸𝐷𝑉𝑅𝑊𝑀 = 𝑎2 𝑅𝑊𝑀 + 𝑏2    (2) 

The linear model comprises the two parameters a2 and 

b2. The parameter a2 represents the sensitivity of the 

RWM to EDV variations, while the offset b2 is the 

theoretical volume at zero RWM. Both parameters a2 and 

b2 of the linear RWM model are patient-specific, i.e., 

they depend on the heart size, the heart rate and the 

contractility. As in the previous model, the parameters a2 

and b2 have to be calibrated.  

2.3 Animal Experiment 

The animal housing and all procedures and protocols 

were approved by the Cantonal Veterinary Office 

(Zurich, Switzerland) under the license number 

152/2013. Housing and experimental procedures were in 

accordance with Swiss animal protection laws. All 

animals were pre-medicated with ketamine (20 mg/kg), 

azaperone (1.5 mg/kg) and atropine (0.75 mg). 

Additionally, they were treated with anti-arrhythmic 

therapy with amiodarone (2-3 mg/kg bolus iv). During 

data recording the anesthesia was maintained through co-

administration of propofol (5 mg/kg/h) and fentanyl 

(0.02 mg/kg/h).  
In this study we analyze the intracardiac ECG data of 

three healthy pigs (P1, P2, P3) weighing 89.3 ± 2.6 kg. 

They were supported by a modified Deltastream DP2 

(Medos Medizintechnik AG, Stolberg, Germany) blood 

pump implanted between the left ventricle and the aorta, 

simulating an LVAD. The pigs were intubated, assisted 

by mechanical ventilation, and connected to an extra-

corporal heart-lung machine. Fig. 1 shows the 

positioning of the cannulas and measurement equipment.  

The left ventricular loading was altered through 

variations in pre- and afterload while the LVAD was 

operated at a constant speed. The speed was set such that 

the mean residual flow through the aortic valve was 

approximately 0.5 L/min. For each animal, we conducted 

four consecutive measurement blocks (A, B, C and D) 

consisting of several randomized series of preload and 

afterload variations. Preload variations were induced by 

the heart-lung machine through infusion or drainage of 

500 mL blood volume to or from the animal’s 

circulation. Afterload variations were induced by 

inflation of a reliant balloon in the descending aorta. 

Conducting the entire experiment with all four blocks 

took approximately 3 h. 

As EDVREF, we measured long (la) and short axes (sa) 

of the left ventricle with four ultrasound crystals (UDG, 

Sonometrics Corp., London, Ont., Canada), three 

attached intramural and one integrated in the inflow 

cannula of the LVAD. Based on that data, we calculated 

the LVV with a hemi-ellipsoid approximation, LVV = 

2/3 ∙ sa
2 ∙ la (3). We measured the LVP and intracardiac 

ECG with a pig-tail conductance catheter (Ventri-Cath 

510 / MPVS Ultra, Millar Instruments Inc., Houston, TX, 

USA). All signals were continuously recorded at 500 Hz. 

A detailed description and explanation of the in-vivo 

study was reported in [2]. 

 

Figure 1: Positioning of the pig-tail catheter, the four 

ultrasound crystals and the left ventricular assist device  

2.4 Data Analysis 

The analysis of the data was performed offline on a 

beat-to-beat basis for LVV, LVP and ECG. The EDV 

and EDP values were extracted using the R-wave of the 

ECG signal as a trigger. Fig. 2 shows an example of 

EDV, EDP and R-wave detection data. Negative EDP 

values originating from suction events were excluded. 

The RWM was computed as the difference between the 

minimum and maximum of the QRS complex of the 

ECG. We excluded beats with irregular ECG wave 

forms.  

In order to capture intra-animal variability, the 

calibration and cross-validation of the models described 

in Equations 1 and 2 was performed block-wise. For each 

block, we calibrated the parameters a1, b1, a2 and b2 

through a linear least squares fit in MATLAB (R2014b, 
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The Mathworks Inc., Natick, MA, USA). The calibrated 

model of each block was cross-validated with the three 

other blocks of the same animal. For the calibration we 

report r-squared (r2) as a quality of fit, while for the 

cross-validation we report the root mean square error 

(RMSEEDP, RWM) between the estimated end-diastolic 

volumes EDVEDP or EDVRWM and the measured end-

diastolic volume EDVREF. Averaged results are always 

reported as mean ± standard deviation (SD).

 
Figure 2: In-vivo data of the left ventricular volume 

(LVV), the left ventricular pressure (LVP) and the 

intracardiac ECG. The circles indicate the end-diastolic 

volume (EDV) and pressure (EDP), and the R-wave. 

3 Results 

The model parameters were calibrated for each 

animal (P1, P2, P3) and each block (A, B, C and D). 

Mean and SD of the measured quantities were EDV 

(60.13 ± 20.11 mL), EDP (7.04 ± 4.44 mmHg) and 

RWM (4.60 ± 2.57 mV). Fig. 3 shows the calibration of 

P1-A with the respective model fit and the 99% 

confidence interval. The model corresponds well with 

the data, except for small values of EDP and high values 

of RWM. The data is not equally distributed across all 

volumes, but an accumulation occurs around volumes 

between 64 and 70 mL.  

Figure 3: Example data P1-A with model fits and a 

confidence interval of 99%.  

Table 1 lists the calibrated values of the model 

parameters a1, b1, a2 and b2 and the resulting r2 as the 

average values over the four blocks in each animal. Each 

parameter is in the same order of magnitude for all 

animals and all blocks. Intra-animal variations of the 

parameters are smaller for the EDVEDP compared to the 

EDVRWM. The quality of fit was found to be marginally 

higher for EDVEDP than for EDVRWM for all animals.  
 

Parameters estimated per animal  

  a1 (mL) b1 (mL) r2 

EDP P1 54.1±13.9 39.9±9.4 0.92±0.03 

P2 62.2±9.4 23.9±4.9 0.85±0.06 

P3 50.2±6.5 19.1±4.4 0.88±0.04 

  a2 (L/V) b2 (mL) r2 

RWM P1 -15.2±2.7 173.9±16.7 0.79±0.03 

P2 -36.6±12.9 145.4±29.2 0.83±0.05 

P3 -11.5±1.1 100.7±2.3 0.85±0.04 
a1, a2, b1,b2: model parameters, r2: r-square 

Table 1: Model parameters and quality of fit with 

mean ± standard deviation across the four blocks in 

each animal. 

Fig. 4 shows the error between modelled and 

estimated EDV (ΔEDV) dependent on the reference 

volume, where the model was calibrated with P1-A and 

validated against blocks P1-B, P1-C and P1-D. The 

RMSEEDP and RMSERWM values are 3.42 mL and 4.21 

mL, respectively. A total of twelve such analyses was 

performed, which are summarized in Fig. 5. The 

estimation is inferior for extreme volumes, which can be 

observed for most data sets.   Fig. 5 shows the RMSE in 

the range of 2-8 mL for every block and every animal. In 

P1, the RMSE for both estimation methods are 

comparable. In P2 and P3 RMSEEDP is lower and more 

consistent than RMSERWM. The RMSE varies between 

the blocks, but not in a consistent way.  

Figure 4: Example data of P1-A EDV estimation 

error (ΔEDV) for EDP (b) and RWM (g). Solid line: 

Root mean square error (RMSE), dashed line: 

Maximum value (x). The y-axis is mirrored w.r.t zero. 

4. Discussion  

The models used for the EDV estimation in this study 

represent the state of the art and convince by their simple 

structure and their linear dependency on only two 

parameters. Fitting the model parameters resulted in 

high-quality fits. In this study, the intracardiac ECG was 

measured and showed r2 values similar to those observed 

by other groups in the external ECG [8,9]. Deviations 

from the model are observed only at extreme volumes, 

i.e., more sophisticated models for the estimation of 

EDVRWM should be developed in the future. 
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Figure 5: Root mean square estimation error 

(RMSE) for every block, cross-validated with the three 

other blocks of the same animal for EDP (b) and RWM 

(g). The y-axis is mirrored with respect to zero. 
 

Thus far, no study has compared the feasibility of 

using in-vivo RWM in contrast to EDP as a preload index 

for the control of LVADs. The RMSEEDP and RMSERWM 

provide a first estimate of the uncertainty involved with 

the usage of EDP or RWM as a control input. Both 

RMSE values are below the previously defined 

maximum relative sensor error of 20%, i.e., both signals 

are potential candidates as control inputs. The inferior 

results of EDVRWM in the animals P2 and P3 are possibly 

linked to the high sensitivity of the RWM to the catheter 

position as well as hematocrit changes in the blood.  

In order to use the EDVEDP or EDVRWM as control 

input the signal needs to be available continuously. A 

significant number of beats showed irregular wave forms 

in the ECG. In these beats, no distinct RWM can be 

detected and they were thus excluded from the analysis. 

Therefore, when EDVRWM is used as input for physio-

logical control, no EDV signal will be available during 

these arrhythmic beats. For EDVEDP estimation, the EDP 

could alternatively be detected directly from the pres-

sure signal without R-wave triggering. However, this 

detection of EDP is not trivial and therefore is less robust. 

In summary, discontinuities of EDP and RWM are not 

directly correlated, thus robust LVAD control method 

with the EDP, the RWM, or a redundant combination of 

the two seems feasible.  

Inter-animal variability in the parameters and RMSE 

exists for both estimation methods and is in an acceptable 

range. The importance of calibration is shown by the 

inter-animal variation of the offsets b1 and b2, which, 

without calibration, translate directly into an estimation 

error. It is not possible to use the same parameter set for 

every animal. The data collected will allow us to further 

investigate the sensitivity of the output error with more 

stringent bounds to the calibration effort. For example, 

one parameter could be kept constant, while only one 

parameter would be identified, thus requiring fewer 

calibration data points. Intra-animal variability in the 

parameters between the timely separated blocks is in the 

same order of magnitude as between animals. The 

parameters vary during the course of the experiment for 

instance, due to sudden bleeding events influencing the 

hematocrit and therefore, the conductivity of the blood 

and the RWM. This additional uncertainty implies that if 

the sensor was implanted in a LVAD patient, the system 

would most likely have to be recalibrated by using a re-

ference volume measurement such as echocardiography 

in case of changes in the physiology. Factors influencing 

the parameters over the long term will have to be 

thoroughly investigated in human LVAD patients.  

The study is limited on the one hand by the use of a 

healthy porcine model in open chest condition and on the 

other hand by the reference measurement system. Two-

axis ultrasound data combined with the hemi-ellipsoid 

model to find EDVREF has a limited accuracy and 

contributes to the error observed. In addition, since no 

external reference ECG signal was recorded, irregular 

ECG waveforms may result from arrhythmia or from a 

contact of the pig-tail electrodes with the myocardium. 

EDVRWM results are likely to improve with consistent 

and repeatable positioning. 

4 Conclusions  

We conclude that the pressure and ECG signals provide 

an equivalent realistic estimate of EDV. Likely, robust 

LVAD control is possible with a redundant combination 

of both signals. 
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Abstract 

This paper proposes a method of efficient assessment 
of the cardiac risk based on the long term Holter ECG 
recordings. In order to process a vast amount of 
clinical data a simplified yet effective method to 
characterize T-wave morphology changes has been 
proposed. The method prevents from using procedure 
with high computational power such as orthogonal 
signal decomposition or repetitive use of Discrete 
Fourier Transform. To eliminate artifact, the beat to 
beat adaptive artifact detection and rectification 
methods have been introduced. T-wave alternans, T-
wave variability and related indices are suggested to be 
utilized for the integrated cardiac risk assessment. 
Illustrative examples have been shown to demonstrate 
the effectiveness of the method. 

Keywords Holter ECG, sudden cardiac arrest, risk
assessment, T-wave alternans, biosignal processing 

1 Introduction 

The risk assessment of the sudden cardiac arrest 
(SCA) has been one of the most important issues in the 
field of health care since SCA is one of the major 
causes of death worldwide. In the U.S. for example, 
over 300,000 SCA incidents are reported [1]. Several 
indices based on ECG recordings for the risk 
assessment are well known[2]. Recently, indices 
derived from 24-hour long term Holter ECG recordings 
attract considerable attention of research community 
[3]-[5]. Authors have been proposing new indices 
named T-wave alternans ratio percentile (ARP) and 
QT-RR co-variability extracted from Holter ECG 
records[6]. This paper focuses on the use of T-wave 
morphology changes for the risk assessment and 
introduces an efficient method to cope with the need to 
process vast amount of clinical data.  An adaptive 
correlation method is introduced for both artifact 
rectification and T-wave characterization without using 
methods with extensive computational power. The 
paper also briefly discusses the future research direction 
under the vision of “Computational Electrocardiology 
(CECG),” where the ECG data were acquired, stored 
and processed continuously based on wearable sensors 
and the cloud information processing systems[7]. 

2 Methods  

We briefly review the SCA risk index named 
alternans ratio percentile (ARP), which we proposed[6], 
as a mean to detect the presence of alternans in 24 hour 
Holter ECG recordings. Then a new alternative method 
for the efficient clinical data analysis will be introduced. 

2.1 Alternans Ratio Percentile 

T-wave alternans ratio (TWA) has been recognized
as an effective measure of SCA risk assessment. The 
index has been typically measured in the clinical test 
environment with elevated heart rate[2]. It is desirable 
if the TWA is evaluated from the Holter ECG 
recordings in the natural living environment. Although 
some software has been provided for the Holter ECG 
evaluation, the large amount of noise contamination 
makes it difficult to obtain reliable consistent measures. 

Instead of performing manual inspection of derived 
indices, we propose to utilize alternans ratio percentile 
(ARP) as a measure of SCD risk assessment. The 
method has been described in [6] in detail. Here is a 
brief summary of the proposed index. T-wave alternans 
ratio (AR) has been obtained for all one-minute 
successive segments of ECG data for 24 hours. T waves 
have been extracted beat to beat and the singular value 
decomposition has been applied to extract orthogonal 
signals behind the T-wave signals. Then, adjacent and 
one after adjacent vector distances of two orthogonal 
signals are measured and the distance sequence thus 
obtained has been analyzed. The T-wave aveform 
alteration has been detected by the altenans ratio (AR) 
which is the ratio of the DFT power of the sequence at 
the Nyquist frequency and the average DFT amplitudes 
at adjacent frequencies. DFT has been applied to all 
one-minute segmented data. In such a way we obtain 
1,440 AR values for 24 hours. For such large number of 
segments, there is a good random chance to yield the 
segment with high AR value. For example, random 
chance of alternate changes for successive 10 beats is 
0.001 which may yield a high AR value. These 
incidents may happen a few times in average for the 
normal subjects without any SCD risk. To avoid such 
random chance cases, θ percentile values of Total ARs 
in a day is suggested to use for the SCD risk index. We 
named it the alternans ratio percentile (ARP). The value 
of θ has to be determined empirically. 
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2.2 Simplified ARP estimation  
 

In order to estimate the ARP of vast amount of 
clinical data, the method described in the previous 
section is too time consuming especially orthogonal 
signal decomposition takes a lot of time. DFT/FFT 
calculations for all one-minute data segments are also 
time consuming. In this section, a simplified method of 
ARP estimation has been described. 
 
T-wave amplitude estimation  

The IIR Bandpass filtering is applied to the original 
ECG data to reduce the effect of baseline drift. 
Empirically, we have been adopted 12th order 
Butterworth band pass filter (0.5-60Hz). The filter 
removes the drift fairly well, but apparent drift still 
remains after the filtering. Further increase in the cut off 
frequency of high pass part of the filter deteriorate the 
T-wave morphology.  

To concur this problem, we introduced the 
following adaptive method of amplitude estimation with 
baseband correction. T-wave peak time plus minus 150 
mS has been extracted for each of successive one-
minute ECG segments. Fig. 1 shows a typical example 
of extracted T-wave’s for an one-minute segment. Two 
types of alternans at the first part of the segment and 
apparent artifact are visually seen at the end. To 
perform the reasonable estimate of T-wave amplitude, 
the average waveform using all T-waves in the segment 
has been obtained (Fig. 2). 

 
 

Fig. 2 Averaged T-wave 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now to remove the artifact, correlation coefficients 
between the averaged T-wave and bias corrected T-
wave are estimated. Fig. 3 shows the result for the data 
shown in Fig. 1. The T-wave with the correlation 
coefficients less than 80% is assumed to be artifact and 
if the ratio of artifact is less than 80%, average T-wave 
is replaced by the artifact. Otherwise the whole segment 
is excluded from the further analysis. When the artifact 
is replaced by the average T-wave, the process is 
repeated until all correlation coefficient values exceed 
0.8. The least square curve fit of average T-wave and 
each T-waves in the segment is utilized to estimate both 
the drift bias and T-wave amplitude. 

 
 

Fig. 3 Correlation coefficients between average and 
individual T-waves 

 
ARP estimation 
 Discrete Fourier Transform (DFT) power has been 
calculated from the T-wave amplitude series thus 
obtained. Then the alternans ratio, that is the ratio of the 
power at the Nyquist frequency and the average power 
at surrounding frequencies, have been estimated for all 
segments. ARP is finally estimated as the θ percentile 
values of all ARs. This ARP estimation needs a lot of 
computational power since it requires the DFT of all 
segments, i.e. DFT calculation of 1,440 times. For 
simplified measure, the relative amplitude difference 
between even and odd beats will be utilized. The 
amplitude sequence can also be used to estimating T-
wave amplitude variability (TAV). 

Fig. 1 An example of extracted T-waves for an one-minute segment 
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3 Results  

The ARP is applied to 26 outpatients with SCD risk and 
25 control subjects. The outpatients are further divided 
in to two groups, that is high risk patient group with life 
threatening incidents or severe arrhythmia and low risk 
patient group with high blood pressure without 
arrhythmia or supraventricular tachycardia. The results 
showed 5 percentile of AR values is most effective to 
differentiate the high risk group and the rest. p-values 
are less than 31007.0 −×  to differentiate high risk from 
low risk patients. Fig 4 shows the typical examples of 
ordered ARs for a patient with high SCA risk with the 
history of severe heart attack (Solid line) and for a 
control normal subject (dotted line). The differences are 
apparent and this figure suggests that the ARP can be a 
stable measure of the presence of T-wave alternans. 

 
 

Fig. 4 Ordered Alternans Ratios for 24 hours 
 

The simplified method presented here performs 
equally well to estimate the alternans ratio. Fig. 5 shows 
the relative amplitude series obtained by the method 
described in the previous section for the sample data 
shown in Fig. 1 where the apparent amplitude 
alternation is observed. This alteration is also visually 
seen mainly in the first part of Fig. 1. 

 

 
 

Fig 5. An example of amplitude series with apparent 
T-wave alternans 

 
DFT power of the amplitude series is calculated and 
shown in Fig. 6 where excess power at Nyquist 
frequency is observed. 

 
 

Fig. 6 DFT power of the amplitude sequence with  
T-wave alternans 

 
As a simplified measure of detecting the presence of T-
wave alternans, the p-value of statistical test to see the 
median or mean difference between odd and even T-
wave amplitude can be used. Fig. 7 shows the box plot 
of T-wave amplitude for even and odd beats. The 
difference in median is significant with p value equals 
to 0.004. Inverted logarithm p could be a suitable 
measure of the presence of T-wave alternans.  

 
Fig. 7 T-wave amplitude difference between  

even and odd beats 
 

3 Discussion and Conclusions  

An efficient method of SCD risk assessment for 
processing vast amount of 24 hour Holter clinical data 
has been proposed. Instead of methods utilizing heavy 
computational power such as orthogonal signal 
decomposition or repetitive use of DFT/FFT, the 
proposed method utilizes fairly simple signal processing 
methods yet aiming at preserving the accuracy of SCD 
risk assessment. The comparison of the method with 
high computational load is shown in Fig 8. Although 
some commercially available software implements 
methods to derive the indices for SCD risk assessment, 
they remain as an experimental stage. Clinicians need to 
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make considerable amount of eye inspections to 
eliminate artifacts to get a meaningful result[8]. The 
automatic artifact detection and processing method 
proposed in this paper will be utilized for reducing the 
load of clinicians’ eye inspection. This paper focuses on 
the evaluation of T-wave alternans. However, the 
method could be applied to derive other indices such as 
T-wave amplitude variability (TAV). Recently, the 
heart rate variabilities, short term or long term including 
the diurnal changes are studied for SCA risk 
assessment[3]-[6]. Integration of all these measures 
both derived from ECG waveforms and beat occurrence 
timing data should be pursued to establish reliable and 
efficient means to assess the SCA risk assessment. In 
the latest issue of the journal of methods of information 
in medicine For-Discussion-Section[7], the future 
vision of ECG study has been discussed under the 
symbolic notion of Computational Electrocardiography 
(CECG). In this vision the continuous multichannel 
ECG data are acquired by wearable sensors and 
stored/processed online to make the timely feedback for 
the health care practice. The SCD risk assessment will 
be one of the most important development goals for 
CECG practice. Integration of the risk assessment 
indices derived from Holter 24 hour or even longer 
continuous ECG recordings for the timely health care 
advice is the ultimate goal of the study. To develop 
such systems, the introduction of a standardized ECG 
data format will be useful to establish the common 
foundation of the system development. The integrated 
file format of ISHINE[9] or MFER[10] and beat 
annotation format adopted by Rochester University 
Telemetric and Holter ECG warehouse named THEW 
file format[11] will be one of promising candidates for 
such standardization.    
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Fig. 8 Schematic Diagram to Extact T-wave Related SCA Risk Indices  
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Abstract 

This study investigates the effect of confounding 
factors - comorbidities, body position, ECG lead, 
respiratory event type and sleep stage - on 
recognition of sleep apnea from the ECG. A set of 
140 simultaneous recordings of polysomnograms 
and 8-channel Holter ECGs is stratified for these 
factors, and minute-by-minute apnea detection 
performance is assessed using receiver operating 
characteristics curves. The detection is based on 
parameters of heart rate, ECG amplitude and 
respiratory myogram interference. We consider 
spectral and correlation-based features.  

The results show that typical comorbidities and 
supine body position impede apnea detection from 
the heart rate. Availability of multiple ECG-leads 
improves robustness of ECG amplitude based 
detection with respect to posture influence. But 
quite robust apnea detection is achievable with a 
single ECG channel – preferably lead I. Sleep 
stages and respiratory event type have a 
significant and quite consistent effect on apnea 
detection sensitivity with better results for light 
sleep stages, and worse results for REM sleep. 
Mixed and obstructive events are better detected 
than central apneas and hypopneas. 

Keywords Sleep-Disordered Breathing, Confounding 
Factors, Screening, ECG, Heart Rate

1 Introduction 

Clinically relevant sleep-disordered breathing (SDB) 
is inherently repetitive and evokes characteristic quasi-
periodic modulations in several ECG parameters, which 
can be quantified to identify SDB from the ECG. 
Typically, a cyclic variation in heart rate (CVHR) is 
observed, which is evoked by accelerations due to 
respiratory arousals, and mediated via the autonomic 
nervous system (ANS) [1]. Moreover, ECG amplitude 
[2] and myogram interference in the ECG [3] are
modulated in a characteristic fashion.

Most of the published detection algorithms target 
CHVR or ECG amplitude modulation, or a combination 
of both. In a previous study we compared the different 
information sources, and obtained rather unfavorable 
SDB detection results for features based on heart rate 
[3]. This motivated us to investigate into potential 
confounders. The current study stratifies our previous 

data set with respect to various physiological and 
technical factors, and assesses their effects on SDB 
detection performance. The results improve the 
understanding of current detection limitations and 
suggest strategies for further development. 

2 Methods 

The data analyzed in this study consist of 140 parallel 
recordings of attended overnight polysomnography 
(PSG) and Holter-ECG (Mortara H12+, 8 channels, 
1kHz/ch sample rate). They were registered in 121 
different subjects (16 female, 105 male) referred to the 
Sleep Medicine Center at Thoraxklinik Heidelberg for 
suspected SDB. The average age was 54.7y±11.4y, and 
the average AHI was 26.4/h±27.9/h. All ECGs 
contained less than 5% ectopic beats with one exception 
(8%). There were no other exclusion criteria. 

The PSG annotations served as reference for the ECG 
based detection of SDB in epochs of one minute 
duration. Each epoch obtained a binary flag for the 
presence or absence of respiratory events. We used the 
same signal processing and classification features as 
detailed in [3]. The series of RR-intervals was derived, 
and the series of areas under the QRS complex (QRSA) 
were extracted as a measure of ECG amplitude in each 
of the 8 ECG channels. Finally, we assessed the 8 series 
of respiratory myogram interference (MYO). From each 
of the series we extracted the following features to 
assess the SDB modulations: 

The magnitude of the maximal FFT spectral 
coefficient in the frequency range [0.0117Hz, 0.041Hz], 
corresponding to a period of 25s to 85s, was used as a 
spectral feature (SMA). Furthermore, the local 
similarity index (LSI) feature [3] was calculated. It 
identifies an ‘apnea pattern candidate’ from the central 
minute of each 5min segment, and quantifies its local 
recurrence by means of the correlation function. The 
sum of all correlation values exceeding a threshold (e.g. 
0.9) yield the LSI. 

Please note that for the features derived from QRSA 
and MYO, a maximum value selection was performed 
over the 8 ECG channels within each 1 min epoch. I.e. 
only the maximum seen in all channels was used. 

To identify the effect of potential influence factors on 
the features and base data types, we stratified the data 
set with respect to these factors and assessed minute-by-
minute SDB detection accuracy by means of receiver-
operating characteristics (ROC) curves. The factors 
considered are presence of typical comorbidities: 
diabetes (type II), myocardial infarction (MI) and 
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periodic limb movements (PLMs), as well as body 
position, ECG lead, respiratory event type (obstructive, 
central, mixed or hypopnea) and sleep stage. The latter 
were scored according to the Rechtschaffen and Kales 
criteria which were still in place at the time of data 
collection. We merged sleep stages S3 and S4 into one 
single stage. 

3 Results 

Table 1 gives the characteristics of the subgroups with 
diabetes, MI, PLMs, and of the remaining data, which, 
however, must not be regarded as free from other 
diseases or medication. The AHI in the diabetes and in 
the MI groups tends to be greater than in the control 
group. The PLM group is the least homogeneous, as 
indicated by the considerable difference between 
median and mean AHI. 
The effect of comorbidities on apnea detection is shown 
in Fig. 1A-D. There is one ROC diagram for each of the 
features LSI(RR), SMA(RR), LSI(QRSA) and 
LSI(MYO), respectively. The blue curves represent the 
control group. A fall-off is evident for all comorbidities 
in the heart rate based features (Fig. 1 A and B) with a 
smaller effect in the spectral feature SMA (Fig. 1B). In 
contrast, detection from the QRSA the MYO series is 
very robust. LSI(QRSA) is negatively affected only by 
PLMs (Fig. 1C, green curve), and both series show even 
improved performance in the small MI subgroup (Fig. 
1C and D orange curves). In all subgroups, the QRSA- 
and MYO based features are superior to the RR-based. 
Fig. 2A depicts the sleep stage influence on SDB detec 

Subgroup  N %SDB AHI [1/h] 
mn/med 

Diabetes (type II) 17 29.8 31.0 / 25.7 
Myocardial 
Infarction 

7 30.9 29.1 / 26.1 

PLMs (PLMI > 8) 9 21.7 35.3 / 4.7 
Others (“control”) 109 24.3 25.1 / 14.4 

Table 1: Subgroup size (column N) and SDB 
characteristics for the comorbidities under 

consideration. %SDB: percentage of 1min epochs spent 
in SDB. AHI mn/med: mean and median AHI.  

tion sensitivity. The LSI features of all base data types 
consistently show their best sensitivity for the light 
sleep stages S1 and S2 (blue bars) in which almost 77% 
of all events are observed. Sensitivity exceeds 0.8 for 
QRSA and MYO, but not for RR. In deeper sleep (cyan 
bars) and REM sleep (yellow bars) the detection is 
clearly less sensitive (<0.7, and even <0.6 for RR). 
Remarkably, the spectral heart rate index SMA(RR) 
provides the best overall sensitivity for REM sleep 
events (>0.75) despite being the least sensitive feature 
in all other sleep stages. 
The effect of the respiratory event type on apnea 
detection sensitivity is given in Fig 2B. The highest 
sensitivity is consistently observed for mixed events 
(cyan bars) followed by purely obstructive events (blue 
bars). The sensitivity is reduced for central events 
(orange bars) and hypopneas. The latter represent more 
than 50% of all event epochs. The highest sensitivities 
are found for QRSA and MYO, and exceed 0.9 for 
mixed and 0.8 for obstructive events. Central events are  
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Figure 1: A-D: Effect of comorbidity on SDB detection for different features and base data types. Color codes the 
presence of comorbidities as indicated in the legends. A: LSI(RR), B: SMA(RR), C: LSI(QRSA), D: LSI(MYO). 

E, F: Effect of ECG lead on SDB detection based on LSI(QRSA) or LSI(MYO) 
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detected at almost 0.8 sensitivity by QRSA, and for 
hypopneas the sensitivity exceeds 0.75. The sensitivity 
for RR-based features is generally reduced 
The influence of the body position on the LSI feature of 
the three base data types is shown in Fig. 3. The most 
prevalent position is supine (46%) followed by right 
(17.9%) and left (14.3%) side. The positions prone, 
prone right and prone left contribute with less than 1% 
each. For QRSA the performance is quite homogene-
ous, and largely independent of posture in the prevalent 
positions (Fig. 3A).  
A stronger dependency on position is seen for MYO 
(Fig. 3B) with slightly better performance for the right 
side position (red solid line) compared to the left (green 
solid), and reduced performance for the supine posture 
(blue solid). 
Surprisingly, there is also a clear effect of posture on 
LSI(RR) with worst performance for the supine position 
(Fig. 3C, blue solid line) and comparable right and left 
side results. 
There is no dependency of the RR-based features on the 
ECG lead. Best performance for QRSA is obtained 
from lead I (Fig. 1E, red curve), and an improvement is 
observed when the maximum LSI(QRSA) from all 
available leads is taken (blue curve). MYO is clearly 
less dependent on the ECG lead (Fig. 1F) with only 
marginal improvement over lead I (red curve) when all 
leads are considered (blue curve). 

4 Discussion and Conclusions  

This study addresses the effect of various factors on the 
detection of sleep apnea from the ECG. It shows that 
virtually all investigated factors impact detection 
performance. Some of the factors – like event type and 
sleep stage – have a quite universal effect that is 
similarly observable in each of the base data types heart 
rate (RR), ECG amplitude (QRSA) and respiratory 
myogram interference (MYO). With respect to other 
factors like typical SDB comorbidities or body position, 
the base data types clearly differ in robustness. 
The autonomously mediated modulations in the heart 
rate are strongly affected by both, comorbidities and 
body position. This is probably the reason for the 
unfavorable results we observed previously for features 
based on heart rate [3], and this may also explain the 
strong dependence of the results on the sample seen in 
heart rate based sleep apnea detection [4].  
The periodic heart rate accelerations found in PLMs 
mimic the CVHR modulations and result in a 
performance loss (Fig. 1A, green line). This effect has 
also been observed in other studies [5]. But in our data, 
it is even stronger for diabetes and MI. Interestingly, 
CVHR does not seem to be abolished in these 
conditions, since the performance decrease is less 
pronounced in the absolute spectral magnitude SMA 
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Figure 2: Effect of sleep stages (A) and respiratory event type (B) on the sensitivity of SDB detection. The codes for the 
event types in B are O-obstructive, M-mixed, C-central and H-hypopnea. N gives the number of minutes spent in a sleep 

stage (A) or for an event type (B), and % the corresponding percentage. 
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Figure 3: A-C: Effect of body position on SDB detection. Color and line style codes the positions as indicated in the 

legends. Red lines are associated with right orientations, and green lines with left orientations. 
The position labels are: PR: prone, SR: supine right, R: right, SL: supine left, S: supine, PL: prone left, P: prone, L: left.  
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(Fig. 1B). QRSA and MYO are not mediated via the 
ANS, and evidently are much more robust against such 
factors (Fig. 1C and 1D).  
We were quite surprised by the strong dependence of 
LSI(RR) on the body position (Fig. 3C) which indicates 
a significant postural ANS effect even when lying. The 
detection accuracy for the very relevant supine position, 
and also for supine-right, is clearly reduced.  
We had expected such dependence rather for QRSA, 
since the mean value and the magnitude of the 
respiratory ECG amplitude modulations are heavily 
affected by posture [3]. However, comparing Fig. 3A to 
3B and 3C suggests that QRSA is the most robust data 
source with respect to body position, with quite 
consistent performance for all relevant postures. It 
should be noted that part of this robustness goes back to 
the availability of multiple ECG leads and that actually 
the best performing body positions change with the 
leads for QRSA. The blue curve in Fig. 1E shows that 
picking the optimal lead in each case clearly improves 
the performance. But still, lead I alone achieves quite 
good performance, and is clearly superior to all other 
leads (Fig. 1E, red curve). 
In contrast to QRSA, MYO exhibits a stronger 
dependence on posture. The max-selection over the 
leads does not significantly improve LSI(MYO) (Fig. 
1F), and the differences between the leads are much 
smaller. For practical purposes, this means that in a 
single-lead application, lead I is the lead of choice to 
capture the ECG amplitude modulation, but the 
performance will benefit from further leads if available, 
whereas the benefit from additional leads will be 
limited for MYO.  
There is a remarkable consistency over all features and 
data types with respect to relative detection sensitivity 
for the respiratory event types (Fig. 2B). Clearly, the 
mixed and obstructive apneas are detected best whereas 
central apneas and hypopneas are more problematic. 
But the absolute level of sensitivity, in particular for 
LSI(QRSA), appears still acceptable and sufficient for 
screening applications. 
With respect to sleep-stage dependence, the relative 
performance is again very consistent for the LSI 
features (Fig. 2A). Having maximal sensitivity for the 
light sleep stages S1 and S2 is advantageous since they 
are prevalent, and daytime sleepiness has been linked to 
the occurrence of respiratory events in these stages [6]. 
Subjects with severe sleep apnea rarely reach the deeper 
sleep stages S3 and S4. Consequently the reduced 
sensitivity in this stage, which is particularly evident for 
the RR features, is practically less relevant. However, 
the reduced sensitivity for REM-events may be of 
concern. Interestingly, these REM-events appear to be 
quite pronounced in the spectral domain of HRV, where 
SMA(RR) clearly stands out. It has been described that 
nocturnal HRV is mainly governed by sleep stage, and 
that sleep apnea does not alter the underlying regulatory 
mechanisms [7]. The similar mechanisms in REM and 
WK stages are reflected in our data by virtually 
identical performance for both, LSI(RR) and SMA(RR) 
(Fig. 2B).  
In conclusion, our results show that typical SDB 

comorbidities adversely affect sleep apnea detection 
from heart rate modulations. Moreover, its performance 
is clearly reduced in the supine and supine right body 
positions. Availability of multiple ECG-leads improves 
robustness of ECG amplitude assessment with respect 
to positional influence, but quite robust apnea detection 
can already be achieved with a single ECG lead – 
preferably lead I – on basis of the QRSA and MYO 
series. Sleep stages and respiratory event type have a 
clear and quite consistent effect on apnea detection 
sensitivity with better results for light sleep stages, and 
worse results for REM sleep. Mixed and obstructive 
events are better detected than central apneas and 
hypopneas. But future performance improvements 
appear possible by making clever use of complementary 
information, e.g. from spectral analysis of heart rate 
modulations during REM sleep, or by addressing 
central event detection with separate strategies [8]. 
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Abstract 

Studies of heart rate variability indicate that 
cardiac autonomic dysfunction is an increased risk 
for mortality in cardiovascular patients and suggest 
that the development of accurate and effective 
measures of cardiac autonomic function can 
improves risk stratification among them. Cyclic 
variation of heart rate (CVHR) is characteristic 
heart rate pattern that accompanies apnea-
hypopnea episodes in sleep disordered breathing 
(SDB). CHRV is mediated by the autonomic 
nervous system and thus, CVHR is less 
discernible in patients with cardiac autonomic 
dysfunction. We developed automated algorithm 
for Holter ECGs that detects nighttime CVHRs and 
measures their frequency and amplitude (Fcv and 
Acv). We applied this algorithm to Holter ECG data 
of prospective cohorts of post-myocardial infarction, 
end-stage renal disease, and chronic heart failure 
patients. CVHRs ≥ 4 episodes per night were 
detected in most of these patient (>95% for all 
cohorts) and we found that reduced Acv is 
powerful independent predictor of mortality risk in 
all cohorts, while Fcv has no significant mortality 
predictive power in any of the cohort. 

Keywords Heart rate variability; heart rate response; 
sleep disorderd breathing; mortality

1 Introduction 

Studies of heart rate variability and heart rate dynamics 
indicate that cardiac autonomic dysfunction is an 
independent mortality risk in patients with 
cardiovascular and renal diseases.1-5 These studies 
suggest that more accurate and efficient assessment of 
cardiac autonomic function could provide better risk-
stratifications among these patients. Cyclic variation of 
heart rate (CVHR) is a characteristic heart rate pattern 
observed in nighttime ECG in patients with sleep 
disordered breathing (SDB).6,7 CVHR is thought to 
reflect cardiac autonomic responses to cardio-
respiratory perturbation caused by apneic/hypoxic 
episodes. CVHR is thought to be mediated by the 
cardiac autonomic nervous system and its dysfunction 
results in less discernible CVHR.6 

We hypothesized that reduced amplitude of CVHR 
in nighttime Holter ECG may predicts mortality risk in 
cardiovascular and renal patients. We developed an 
automated ECG algorithm that detects nighttime 
CVHRs.8,9 Using the algorithm we quantified the hourly 
frequency (Fcv) and amplitude (Acv) of CVHR and 
examined their predictive values in prospective cohort 
data, including two post-myocardial infarction (post-
MI) cohorts, an end-stage renal disease on chronic
hemodialysis (ESRD) cohort, and a chronic heart failure
(CHF) cohort.10 In this paper, we reviewed these studies
and discussed the significance of the analysis of CVHR
as an assessment of autonomic function and as the
predictor of mortality risk among cardiovascular and
renal patents.

2 Assessment of CVHR 

We have developed an automated CVHR detection 
algorithm called autocorrelated wave detection with 
adaptive threshold (ACAT).8, 9 ACAT identifies CVHR 
as cyclic and auto-correlated dips in R-R intervals.	 In a 
previous study in 862 patients referred for	 diagnostic 
polysomnography, Fcv measured by	 ACAT correlated 
with apnea-hypopnea index (AHI)	 with r = 0.887 (Fig. 
1) and patients with AHI >15/h were detected by Fcv
with 83% sensitivity and 88% specificity.

Fig. 1. Frequency of CVHR (Fcv) measured by ACAT 
algorithm and apnea-hypopnea index (AHI) in patients 
undergoing polysomnographic study for screening SDB 
(modified from Figure in reference 8).  
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Fig. 1. Measurement of the amplitude of CVHR (Acv) 
by signal averaging method. Segments of R-R intervals 
(si) around dips attributed to CVHR were alight at their 
nadir points (di) and averaged. Acv was measured as the 
depth at the center of the averaged curve of R-R 
intervals (modified from Figure in reference10). 
 
Based on ACAT algorithm, we also developed 
algorithm for measuring Acv by signal-averaging 
method (Fig. 2), by which all dips in R-R intervals 
attributed to CVHR were aligned at their nadir points 
and the depth of averaged curve was measured as Acv.  

3 Prognostic value of Acv and Fcv 

The algorithm was applied to Holter ECG data in a 
cohort of 717 post-MI patients who were followed up 
for a median of 25 months during which 43 patients 
(6.0%) died. Acv was measured in 688 out of 717 
patients (96%). We developed mortality prediction 
model for Acv and found that Acv was lower	 in non-
survivors than in survivors (median [IQR], 3.4 [2.7-3.9] 
vs. 5.0 [4.2-5.7] ln[ms], P <0.001). By contrast, Fcv did 
not differ significantly between non-survivors and 
survivors (P = 0.6). A survival time analysis for Acv 
showed two distinct maxima in the log-rank statistics 
that corresponded to cut-off values of 4.0 and 3.0 
ln(ms). Therefore, we adopted a categorical risk 
stratification scheme for Acv; we classified low-risk 
patients as category 0 (Acv >4.0), intermediate-risk 
patients as category 1 (3.0 <Acv ≤4.0), and high-risk 
patients as category 2 (Acv ≤3.0). 

This scheme was applied to another post-MI cohort 
(n = 220, 56 deaths [25.5%] during 45 months), ESRD 
patients (n = 299, 84 deaths [28.1%] during 85 months), 
and CHF patients (n = 100, 35 deaths [35.0%] during 38 
months). Acv was able to be measured in >96% of 
patients. Figure 3 shows the results of survival analyses 
by Kaplan-Meier method for all cohorts. 

Multivariate models showed that the predictive 
power of Acv and its categories were independent of 
age, gender, diabetes, β-blocker therapy, left ventricular 
ejection fraction, mean R-R interval, and Fcv in all 
cohorts.   By  contrast,   neither  Fcv  nor  its  categories   

 
Fig. 3. Kaplan-Meier curves of mortality for patients 
stratified by the same criteria of Acv cut-off values (4.0 
and 3.0) that were optimized for the post-MI 1 cohort: 
low-risk patients (ACV >4.0), intermediate-risk patients 
(3.0-4.0), and high-risk patients (≤3.0). The mortality 
probabilities differed significantly among the post-MI 1 
(log-rank chi-square = 105.8, P <0.001); post-MI 2 
(38.9, P <0.001); ESRD (28.7, P <0.001); and CHF (9.9, 
P = 0.007) cohorts (modified from Figure in 
reference10). 

 
showed a significant association with mortality or 
predictive power in any of the cohorts. 

Multivariate models showed that the predictive 
power of Acv and its categories were independent of 
age, gender, diabetes, β-blocker therapy, left ventricular 
ejection fraction, mean R-R interval, and Fcv in all 
cohorts. By contrast, neither Fcv nor its categories 
showed a significant association with mortality or 
predictive power in any of the cohorts. 

 

4 Discussion 

These studies indicate that blunted CVHR detected by 
decreased Acv in nighttime Holter ECG monitoring 
predicts increased mortality risk in post-MI, ESDR, and 
CHF patients.	 Because CVHR is thought to reflect 
cardiac autonomic responses to cardio-respiratory 
perturbation caused by apneic/hypoxic episodes, 
blunted CVHR may be a marker of cardiac autonomic 
dysfunction. Our findings seem consistent with the 
hypothesis that blunted CVHR predicts mortality risk 
that is most likely mediated by cardiac autonomic 
dysfunction. 

A variety of autonomic indices of HRV obtained 
from Holter ECG recordings have been reported as 
useful markers for risk stratification in various clinical 
groups including post-MI, ESRD, and CHF patients. 
Acv seems advantageous over these conventional HRV 
indices in several points. First, while most of HRV 
indices reflect nonspecific variation in heart rate, 
CVHR has its pathophysiologic basis, i.e., heart rate 
response to apnea/hypopnea during sleep, which would 
allow us more specific interpretations of findings. 
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Second, while in case of HRV, different indices have 
been proposed with respect to each of different clinical 
conditions, Acv may be used for at least three different 
diseases (post-MI, ESRD, and CHF) with the same risk 
stratification criteria. Finally, Acv predicted mortality in 
CHF patients, in whom most of HRV has no predictive 
power.5 

Although Acv assumes the presence of SDB, Acv 
was able to be measured in 96-98% of post-MI, ESRD, 
and CHF patients who had no clinical evidence to have 
SDB. Also, the predictive power of Acv is independent 
of Fcv that reflects the quantitative severity of SDB and 
the significant prognostic association of Acv is 
observed even in patients with a few CVHR. These 
indicate that for the purpose of risk stratification, Acv 
may be used practically in most of these patients and 
that if CVHR occurs, then Acv can predict mortality, 
irrespective of whether clinical SDB is present or not. 

5 Conclusions 

Blunted CVHR detected by decreased Acv in 
nighttime Holter ECG monitoring predicts increased 
mortality risk in post-MI, ESDR, CHF patients most 
likely through cardiac autonomic dysfunction in these 
patients. 
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Abstract

Extant studies indicated that healthy human heart
rate variability (HRV) exhibits nonlinear properties,
such as long-range correlation of HRV amplitude
(magnitude), non-Gaussian fluctuation, and multi-
fractality. However, the physiological origin of these
nonlinearities was not fully identified. This study
investigated nonlinear properties of high-frequency
(HF; 0.15 to 0.4 Hz) and low-frequency (LF; 0.04
to 0.15 Hz) components in 122 healthy subjects.
An analysis of bandpass-filtered HRV time series
data corresponding to HF and LF components re-
vealed that the amplitude variability of HF and LF
components displayed long-range correlations. This
could not be explained by linear stochastic mod-
els. Furthermore, a spectral coherence analysis
of HRV HF component and respiration amplitudes
was performed. The results demonstrated that long-
range correlation observed in HRV HF amplitude
was associated with long-range correlated respira-
tory modulation. This could be a possible physio-
logical mechanism of nonlinear HRV properties.

Keywords Long-range correlation; nonlinearity; am-
plitude variability

1 Introduction

Frequency-domain heart rate variability (HRV) analy-
sis based on power spectral estimation has been used to
assess autonomic nervous system function [1]. Experi-
ments conducted by previous studies on healthy subjects
under well-controlled conditions indicated that a typical
HRV power spectrum displayed two major peaks cor-
responding to oscillating components in high-frequency
(HF; 0.15 to 0.4 Hz) and low-frequency (LF; 0.04 to 0.15
Hz) bands [1]. The HF component reflects synchroniza-
tion between respiration cycles and HRV, which is also
referred to as respiratory sinus arrhythmia (RSA). In con-
trast, the LF component is associated with Mayer waves
(at approximately 0.1 Hz), which are oscillations related
to the regulation of blood pressure and vasomotor tone.
Typically, HF and LF band powers are used in practical
methods of noninvasively assessing the autonomic ner-
vous system activity. Although HF and LF components of

Figure 1: Illustrative examples of HF components of
HRV and Respiration signals (blue solid lines). (Red
solid lines represent the instantaneous amplitude of each
signal.)

HRV are extensively and intensively studied from a linear
systems viewpoint, the nonlinear characteristics of these
components are not well established. As described by
autoregressive models, the power spectrum in the frame-
work of linear stochastic processes provides a complete
characterization of the process if the stationary condition
is fulfilled [2]. In contrast, nonlinear analysis methods
inspired by nonlinear and statistical physics indicate that
HRV displays nonlinear properties [3, 4]. These findings
suggested that nonlinear HRV properties could provide
complementary information on HRV dynamics and phys-
iological functions [3, 4]. However, the physiological ori-
gin of this nonlinearity was not fully investigated by ex-
tant studies.
The purpose of the present study included investigating
as to whether HF and LF components display nonlin-
ear properties. To this effect, a method to character-
ize the amplitude variation of HF and LF components
was proposed. This method was applied to ambulatory
HRV in healthy subjects. The results demonstrated that
the amplitude variability of HF and LF components dis-
played long-range correlations involved with nonlinear
HRV properties. As previously mentioned, the HRV HF
component reflects RSA. Therefore, the long-range cor-
relation of the HF band amplitude variation can be di-
rectly associated with the respiration amplitude. This was
confirmed by further investigating the relation between
the HF component amplitude of HRV and the respiration
amplitude.
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Figure 2: DFA results for RR interval time series (a) and amplitude variability of HF (b) and LF (c) components in a
healthy subject. The circles and dashed lines indicate the results of the original time series for the surrogate time series.
Scaling exponents,αRRI, α̃HF andα̃LF, were estimated in the range of2 ≤ log10 n ≤ 3 (the shaded area) corresponding
to 50− 500 s. Differences ofF (n) between the original time series (as shown by the circles) and the surrogate (as shown
by the dashed lines) indicate nonlinear properties.

2 Method

2.1 Data

The HRV (RR interval) time series derived from 122
healthy subjects (47.4± 18.2 y) without any known dis-
ease affecting the autonomic control of heart rate (for de-
tails, see [5]) was analyzed. For each individual, a 24
h Holter ECG recording was performed, and an RR in-
terval time series was extracted from the ECG recording.
Any errors in the R wave classification were manually
corrected. The RR interval time series was linearly inter-
polated and resampled at 2 Hz. Additionally, this study
analyzed the daytime (12:00 - 18:00) data. In order to
remove nonstationary trends embedded in the RR inter-
val time series, the resampled time series was high-pass
filtered with a cut-off at1/3600 Hz after removing the
mean value.
Furthermore, ECG and respiration signals were recorded
simultaneously in a single subject (23 years old male) to
confirm the relation between HF band amplitude variabil-
ity and respiration. The subject was seated in a resting
position during the measurement (three recordings of 30
min each). PowerLab and LabChart Pro softwares (AD
Instruments) were used to record the ECG and respira-
tion signals at a sampling frequency of 1000 Hz. Respi-
ratory airflow was recorded with a thermistor flow sensor
placed in front of the nose and the mouth of the subject.
In the analysis, RR interval time series derived from the
ECG recording was linearly interpolated and resampled
at 2 Hz. Moreover, the respiration airflow signal was also
resampled at 2 Hz.

2.2 Amplitude variability of HRV and res-
piration

In order to extract the amplitude variability of HF
and LF components in RR interval time series (Fig. 1),
the following procedure was employed: 1) Fourth-order
bandpass Butterworth filters that pass frequencies from
0.15 Hz to 0.4 Hz and from 0.04 Hz to 0.15 Hz were used
to extract HF and LF components, respectively. 2) The

Hilbert transform was used as shown below:

xi(t) =
1

π
PV

∫ +∞

−∞

xr(t)

t− τ
dτ, (1)

wherexr(t) denotes the analyzed time series, andPV de-
notes the Cauchy principal value. The HF and LF compo-
nent time series were converted to analytic signalsx(t):
x(t) = xr(t)+ixi(t), wherei denotes the imaginary unit,
andxi(t) denotes the imaginary part of the analytic sig-
nal. 3) The instantaneous amplitudeA(t) of the analytic
signal was calculated as follows:A(t) =

√
x2
r + x2

i .
Log-transformed timeseries ofA(t)were used for further
analysis because the distribution ofA(t) was skewed.
Similarly, the HF component (0.15 Hz - 0.4 Hz) of the
respiratory airflow signal was extracted using fourth-
order bandpass Butterworth filters. This was followed
by calculating the instantaneous amplitude through the
Hilbert transform.

2.3 Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) was used to
characterize long-range correlations [6–9]. The DFA pro-
cedure included the following steps: 1) The analyzed
time series were integrated. 2) The integrated time se-
ries were divided into window sizen, and in each seg-
ment the regression line was fitted. 3) The root-mean-
square deviationF (n) from the regression line was es-
timated. 4) Steps 2) and 3) were repeated over multiple
time scales (window sizes) to characterize the relation-
ship betweenF (n) andn. A linear relationship on a log-
log plot ofF (n) as function ofn indicated the power-law
scaling range in which the long-range correlation of the
analyzed time series could be characterized by a scaling
exponentα. This corresponded to the slope of the lin-
ear relation betweenlogF (n) and log n. The study of
long-term HRV involved using linear regression to esti-
mate the slope in the range of100 ≤ n ≤ 1000 (points)
corresponding to50−500 s. The scaling exponents of the
original time series and amplitude variability of HF and
LF components were denoted asαRRI, α̃HF andα̃LF, re-
spectively.
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2.4 Spectralcoherence analysis

The coherence was calculated using all segments to
evaluate the correlation between HRV and respiration.
The coherence function of the two time seriesx

(1)
i and

x
(2)
i is defined as follows:

γ2
1,2 =

⟨
|S12(f)|2

⟩
⟨S11(f)⟩ ⟨S22(f)⟩

(2)

whereS12(f) denotes the cross-spectrum betweenx
(1)
i

andx(2)
i , S11(f) andS22(f) denote the auto-spectra of

x
(1)
i andx(2)

i , respectively. Additionally,⟨ · ⟩ denotes the
mean of all the segments. Ifγ2

1,2 equals zero, it indicates

thatx(1)
i andx(2)

i are completely uncorrelated. In the cal-
culation ofγ2

1,2, the 30 min recordings of the RR interval
and respiration time series were segmented into a sliding
windows of 5 min with an overlap of 50 %.

2.5 Surrogate data analysis

Surrogate data analysis was performed as a validity
check of the nonlinear properties of HF and LF compo-
nents [10, 11]. In order to generate surrogate time series,
an iterative amplitude adjusted Fourier transform algo-
rithm that preserved the temporal correlation of original
time series, was used [11]. Thus, the linear properties,
such as HF and LF band powers and the scaling expo-
nentαRRI, were also preserved in the surrogate time se-
ries. In contrast, the nonlinear properties of HF and LF
components were not preserved in the surrogate time se-
ries. Therefore, the differences in the statistical properties
between original and surrogate time series indicated the
nonlinear properties of the analyzed time series.

2.6 Statistical analysis

In the study, data were reported as mean± SD for con-
tinuous variables. The differences between the groups
were compared using unpaired Student’s t-test. AP
value of less than 0.05 was set as the significance level.

3 Results and Discussions

3.1 Nonlinear properties of HF and LF
components in healthy subjects

The DFA results for RR interval time series and ampli-
tude variability of HF and LF components in a healthy
subject are shown in Fig. 2(a), 2(b) and 2(c), respec-
tively, as illustrative examples. Power-law scaling behav-
ior was observed in the original RR interval time series
(Fig. 2(a)). This corresponded to the results of previ-
ous studies [7]. As shown in Fig. 2(a), it is important
to note that the scale dependence ofF (n) (circles) is
preserved in the surrogate time series (dashed lines). In
contrast, as shown in Figs. 2(b) and 2(c), with respect to
the amplitude variability of both HF and LF components,
the scale dependence ofF (n) between the original time
series (represented by circles) and surrogate time series
(represented by dashed lines) showed clear differences in

Table 1: Heart rate variability indices in healthy subjects

original surr ogate P value

TP (ms2) 4422±2519 4421± 2524

ln 8.22± 0.63 8.22± 0.63 NS

HF (ms2) 166± 188 166±188

ln 4.63±1.05 4.62± 1.05 NS

LF (ms2) 609± 482 608±480

ln 6.05± 0.98 6.05± 0.98 NS

VLF(ms2) 1624±1055 1617±1050

ln 7.16± 0.74 7.16± 0.74 NS

αRRI 1.10± 0.12 1.10± 0.12 NS

α̃HF 0.81±0.08 0.64±0.07 < 0.0001

α̃LF 0.73±0.05 0.66±0.06 < 0.0001

TP: totalpower spectral density; HF: power spectral
density of the high frequency components; LF: power
spectral density of the low frequency components;αRRI:
DFA scaling exponent of RR interval time series;α̃HF:
DFA scaling exponent of amplitude variability of HF
component;̃αLF: DFA scaling exponent of amplitude
variability of LF component. Values indicated means±
SD.

Figure 3:Coherence between the RR interval time series
and respiration airflow signal (solid lines). Dashed lines
show coherence with surrogate data.

the range oflog10 n > 2. This indicated the presence of
nonlinear properties. A power-law scaling behavior was
also observed in this range, and the slope of the original
time series was found to be steeper than that of the surro-
gate time series.

Table I presents the HRV indices in healthy subjects
and their comparison with surrogate data. Given that the
surrogate time series preserved the linear properties of
the HRV, all linear indices, such as HF and LF powers
andαRRI, did not show significant differences between
the original and surrogate time series. In contrast, the
scaling exponents of amplitude variability for the HF and
LF components, namelỹαHF and α̃LF, showed signifi-
cant differences between the original and surrogate time
series. This finding indicated the presence of nonlinear
properties of HF and LF components.
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Figure 4:Coherence between the HRV HF amplitude and
respiration amplitude (solid lines). The dashed lines rep-
resent the coherence with surrogate data.

Figure 5:DFA results for HRV HF component amplitude
(red) and respiration airflow amplitude (blue).

3.2 Relation between HRV amplitude and
respiration amplitude

As shown in Fig. 3, the observations revealed strongly
correlated behavior between RR interval time series and
respiration airflow at approximately0.25 Hz. This be-
havior was noted by previous studies as RSA. However,
as shown in Fig. 4, the amplitude variations of these two
time series showed higher coherence at very low frequen-
cies (<0.04 Hz) and LF ranges. As shown in Fig. 5, both
HRV HF amplitude and respiration airflow amplitude dis-
played long-range correlations. Therefore, the coherence
analysis suggested that long-range correlations in these
amplitude variations had the same physiological origin.

4 Conclusions

This study investigated the properties of amplitude
variability of HF and LF components of HRV in healthy
subjects. The findings revealed that the HF and LF com-
ponent amplitude variability displayed long-range corre-
lations. A comparison between the original HRV time se-
ries and the corresponding surrogate time series demon-
strated that the long-range correlations of HF and LF
amplitude variability reflected HRV nonlinear dynamics.
Furthermore, the results indicated that the long-range cor-
relation observed in the amplitude variability of the HRV
HF component was associated with the amplitude vari-
ability of respiration.

Acknowledgements

This work was supported by JSPS KAKENHI, grant
numbers 15K01285 and 26461094.

References

[1] Task Force of the European Society of Cardiology,
the North American Society of Pacing, and Elec-
trophysiology. Heart rate variability: standards of
measurement, physiological interpretation and clin-
ical use.Circulation, 93:1043–1065, 1996.

[2] J.D. Hamilton.Time series analysis, Princeton, N.J.
Princeton University Press, 1994.

[3] R. Sassi, S. Cerutti, and F. Lombardi et al. Ad-
vances in heart rate variability signal analysis: joint
position statement by the e-cardiology esc working
group and the european heart rhythm association
co-endorsed by the asia pacific heart rhythm soci-
ety. Europace, 17:1341–1353, 2015.

[4] T. Nakamura, K. Kiyono, H. Wendt, P. Abry, and
Y. Yamamoto. Multiscale analysis of intensive lon-
gitudinal biomedical signals and its clinical applica-
tions. Proc. IEEE, 104:242–261, 2016.

[5] S. Sakata, J. Hayano, S. Mukai, A. Okada, and
T. Fujinami. Aging and spectral characteristics of
the nonharmonic component of 24-h heart rate vari-
ability. Am. J. Physiol, 276:1724–1731, 1999.

[6] C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons,
H. E. Stanley, and A. L. Goldberger. Mosaic organi-
zation of dna nucleotides.Phys. Rev. E, 49(2):1685–
1689, 1994.

[7] C.K. Peng, S. Havlin, H.E. Stanley, and A. L.
Goldberger. Quantification of scaling exponents
and crossover phenomena in nonstationary heart-
beat time series.Chaos, 5:82–87, 1995.

[8] K. Kiyono. Establishing a direct connection be-
tween detrended fluctuation analysis and fourier
analysis.Phys. Rev. E, 92:042925, 2015.

[9] K. Kiyono and Y. Tsujimoto. Time and frequency
domain characteristics of detrending-operation-
based scaling analysis: Exact DFA and DMA fre-
quency responses.Phys. Rev. E, 94:012111, 2016.

[10] T. Schreiber and A. Schmitz. Improved surrogate
data for nonlinearity tests.Phys. Rev. Lett, 77:635–
638, 1996.

[11] T. Schreiber and A. Schmitz. Surrogate time series.
Physica D: Nonlinear Phenomena,, 142:346–382,
2000.

Address for correspondence:

Ken Kiyono

Graduate School of Engineering Science, Osaka University,

Japan

kiyono@bpe.es.osaka-u.ac.jp

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

36



Linear and nonlinear functional connectivity methods to predict brain
maturation in preterm babies

M Lavanga1,2, O De Wel1,2, A Caicedo1,2,K Jansen3,4, A Dereymaeker3,G Naulaers3, S Van Huffel1,2,

1Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing
and Data Analytics, KU Leuven, Belgium;
2iMinds Medical IT, KU Leuven, Belgium;

3Department of Development and Regeneration, Neonatal Intensive Care Unit, UZ Leuven, Belgium;
4Department of Development and Regeneration, Child Neurology, UZ Leuven, Belgium

Abstract

In this paper we investigate the relationship be-
tween functional connectivity (FC) and early brain
maturation. On one hand, the objective was to pro-
vide a model able to predict age in premature ba-
bies, on the other hand to shed light on the matu-
ration mechanism of brain interdependencies in first
stages of life. The study was a follow-up consid-
ering the data in [1]. FC was assessed through
the means of mean squared coherence (MSC),
phase locking value (PLV) and activity synchrony
index (ASI). A feature selection indicated that co-
herence in β bands and ASI were the best predic-
tors of the postmenstrual age (PMA), so they were
combined in a single multivariate linear regression
model. The prediction performance showed the root
mean square error (

√
MSE) equal to 2.05 weeks.

Further, the results indicated a decrease/increase
in coherence/ASI with age. This can be due to
the shift from the thalamo-cortical connections to
cortico-cortical connections, leading to more local-
ized and task dedicated networks. Finally, a larger
correlation of ASI and coherence was found in the
left hemisphere compared to the right hemisphere.

Keywords Preterm infants, Early brain maturation,
Coherence, ASI, Functional connectivity

1 Introduction

The need for maturation charts of pediatric brain de-
velopment in order to detect neural disorders has been
widely discussed in literature [2]. Franke [2] has assessed
the brain maturation through the study of functional con-
nectivity (FC) using fMRI. In particular, the author fo-
cused on the prediction of the chronological age until
adolescence using a support vector regression (SVR) in
two cohorts of children, one born full-term and the other
born prematurely. In the early newborns, as their brain
matures, the EEG waveforms change their characteristics
[3]. Therefore, the EEG can be a valuable, non-invasive
and much easier recording procedure, than fMRI [4], to
describe the wiring evolution of the neuron pools in the

cerebral cortex. Gonzalez [4] argued the necessity to use
new approaches to describe brain maturation beyond lin-
ear tools, such as the EEG spectrum. In particular, Gon-
zalez [4] applied linear and nonlinear methods to describe
the functional EEG interdependencies. Among the linear
methods, the mean squared coherence (MSC) has already
been used in literature to evaluate maturation in children
as function of age [5], and in preterm infants as function
of gestational age or postmenstrual age (PMA) [6]. In ad-
dition, phase synchronization methods like phase locking
value (PLV) have also been applied in brain maturation
studies [4]. The goal of this study is twofold: on one
hand, it aims to provide a simple model for the estima-
tion of maturational age in these infants (as discussed by
[7]), on the other hand it evaluates the brain connectivity
in preterm neonates as function of the PMA, using linear
and nonlinear methods to estimate FC, such as the activ-
ity synchrony index (ASI).

2 Methods

2.1 Dataset

This study was carried out using EEG recordings
from 48 preterm neonates. 20 of these recordings have
been used in a previous study [1]. The additional 28
subjects were recruited at the same neonatal intensive
care unit (NICU), in the University Hospitals Leuven.
The patients included in this study had a PMA rang-
ing from 27 to 42 weeks. EEG measurements for each
patient were recorded at least once during their stay at
the unit and lasted at least 2 hours. The total num-
ber of recordings was 104. Labels for quiet sleep (QS)
and active sleep/awake (AS) were provided. The EEG
was recorded using a sampling frequency of 256 or 500
Hz. The measuring electrodes were located accord-
ing to the 10-20 system. The monopolar electrodes
(F1,F2,C3,C4,T3,T4,O1,O2) were chosen as first step to
study FC among brain regions. Each channel was band-
pass filtered between 1-20 Hz and downsampled to 100
Hz. Only the quiet sleep epochs were considered for this
study, since the co-occurrence of activity bursts during
quiet sleep has been considered as a key component in
assessing background activity [8].
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2.2 Functional connectivity measures

In order to quantify the FC among the different EEG
channels, three methods were applied. Since each
method is applied on channels in a pairwise fashion and
there are 8 monopolar electrodes, each FC index provides
a matrix 8 × 8, where each row and each column rep-
resents a specific channel. The obtained matrix is sym-
metric because the coupling direction was not investi-
gated. The first method was the cross-coherence, a linear
method defined between signal x and y at frequency f as

k2xy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
(1)

where Pxy(f) is the cross-spectrum between the two
times-series and Pyy(f), Pxx(f) are the autospectra of
the signals. k2xy was computed for each channel pair
in 30s epochs without overlapping and the spectra were
computed using the Welch method with 5 s windows and
50% overlapping, as suggested by [5]. For each pair, the
MSC was computed in the frequency bands: δ (1-4 Hz),
θ (4-8Hz), α (8-13 Hz), β (13-21 Hz) [4]. The second
method used is PLV, which is defined as

PLVxy =
1

N

∣∣∣ N∑
t=0

ejϕxy(t)
∣∣∣ (2)

where ϕxy(t) = ϕx(t)−ϕy(t). ϕx(t) and ϕy(t) repre-
sent the phases of the time series x and y and are derived
from the analytical signal x̃(t) = x(t)+jxH(t) (or ỹ(t)),
where xH(t) is the Hilbert transform of x(t). The com-
plete signal, with a frequency band between 1-20 Hz, is
used in this method. The last one is the nonlinear method
ASI, which is computed by Räsanen [8] using the energy
weighted temporal dependency function (ETDF):

ETDFxy(τ) =
∑
ij

A(ai)A(bj)
p2(ai, bj)

p(ai)p(bj)
(3)

where ai and bj are downsampled and requantized ver-
sions of the channels x(t) and y(t), with y(t) delayed by
a lag τ . A(ai), A(bj) are the amplitudes respectively for
the sample ai and bj . p(∗, ∗) and p(∗) are the joint and
marginal probability distributions respectively. The ASI
is defined as follows

ASIxy =
ETDFnorm(τ = 0)

( 1
101

∑τ=50
τ=−50ETDFnorm(τ))

(4)

where ETDFnorm(τ) = ETDFxy(τ) −
min{ETDFxy(k), k ∈ [−50, 50])}. ETDF is de-
rived from the definition of mutual information for
different time lags between the signals [8]. Both PLVxy
and ASIxy were computed on 5 min epochs without
overlapping. These three indices provide 6 matrices
8 × 8 for each considered epoch (2 matrices for the
the nonlinear methods, 4 matrices for the coherence).
The matrices belonging to QS periods are subsequently

averaged for each EEG measurement. In order to have a
more general overview of neonatal brain connectivity, the
average matrix can be used to derive indices of general
synchrony, intra and interhemispheric connectivity, as
well as anterior and posterior connectivity as shown in
[1]. In particular, the last two are obtained as average
values of matrix entries associated respectively to ante-
rior electrodes and posterior electrodes. In a similar way,
the intrahemispheric connectivity is measured as the
average of the entries associated to the left or to the right
electrodes. The interhemispheric connectivity is just the
average of the symmetric channel combinations between
hemispheres. In addition to the connectivity measures,
the evolution and the loss of a discontinuity pattern in
the brain electrical activity with maturation can be easily
monitored by means of the suppression curve (SC), as
thoroughly reported in [3]. This index was computed in
5 min epochs of EEG channels and was then averaged
over all QS epochs.

2.3 Linear Regression and statistical anal-
ysis

One of the main objectives of this study is to develop
a model for the prediction of PMA. On one hand we
evaluated the performance of a model containing infor-
mation coming from the different features extracted from
the EEG signals. On the other hand, in order to evaluate
whether the use of different features improves the predic-
tion capabilities of the model, we also study the perfor-
mance of different regression models using features from
ASI, PLV or coherence analysis solely. In both cases a
linear multi-variable model was chosen. A total of 229
features were extracted from each recording. For the PLV
and coherence matrices, only the off-diagonal upper tri-
angular elements were considered as input for the model.
For the ASI matrix also the diagonal elements were in-
cluded. Due to the reduced amount of training points,
104, we performed a feature selection procedure prior
the training of the multivariate models. First, the predic-
tive power of each feature, individually, was assessed by
means of the root mean squared error (

√
MSE), which

was computed from results of a linear regression between
each feature and the PMA. For this phase the data was
split in training set and a test set (2/3-1/3) 100 times. Af-
ter the estimation of the model on the training set, the
performance as

√
MSE and Pearson’s correlation (ρ) be-

tween the prediction and the response variable in the test
set were reported as median with interquartile range, i.e.
q50(IQR) for each variable. In the first case, the model
considering all the extracted attributes, eleven features
with lowest

√
MSE were selected for the final model.

Afterwards, we applied least absolute shrinkage and se-
lection operator (LASSO) regression from the obtained
features set to reduce even more the number of input re-
gressors and the amount of redundant information. For
the models using ASI, PLV and coherence as input only
the LASSO procedure was used in order to reduce the di-
mensionality of the input space. Once the features were
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Figure 1: Regression plot of PMA as function of
k2LEFT (β) on the test set.
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Figure 2: Regression plot of PMA as function of
ASIPOST on the test set.

selected, the dataset was divided once again in training
set and a test set (2/3-1/3) in order to train the different
multivariate models. For both cases, the data splitting and
the LASSO were performed 100 times. The performance
of the different models were measured using fraction of
explained variance R2 and the

√
MSE on the test set,

presented as q50(IQR).

3 Results

Table 1 shows the features with lowest MSE on the test
set as individual predictors of PMA, the Pearson’s corre-
lation (ρ) and the number of times when the correlation
is significant. For each iteration or re-estimation of the
model, the correlation was always significant for most of
the twelve features. Among the top eleven features, the
SC was the best to describe brain maturation using neona-
tal EEG. SC shows a negative correlation with PMA, as
shown in [3]. Looking at linear methods, the coherence
in β band is the attribute that mostly reflects the cerebral
evolution of the infants, with the lowest

√
MSE, com-

pared to the coherence in other bands (Table 1). The
remaining features belong to the different ASI indexes
(Table 1). As shown in [6], MSC(β) presents a nega-
tive correlation with age. An example of linear regression
between MSC in the left brain hemisphere (k2LEFT (β))
and PMA is reported in Figure 1. Table 1 also shows that
ASI is the nonlinear connectivity index that describes the

Features
√
MSE (weeks) ρ (%)

SC 2.23(0.37) -78.28(8.16) §
k2LEFT (β) 2.62(0.43) -69.40(11.66) §
ASIC4,C4 2.73(0.33) 66.14(7.31) §
ASIPOST 2.79(0.41) 59.91(10.36) §
ASIC3,C3

2.80(0.30) 62.43(9.80) §
k2C4,O2

(β) 2.81(0.38) -62.54(11.79) #
ASIO1,O1 2.82(0.40) 61.03(13.15) §
ASILEFT 2.83(0.34) 62.66(9.69) §
ASIC3,C4

2.90(0.39) 57.54(11.06) §
ASIO2,O2

2.91(0.45) 59.63(14.29) §
ASIANT 2.92(0.42) 58.27(12.64) §

Table 1: The best eleven predictors of PMA with the low-
est MSE using a linear regression model. MSE and Pear-
son’s ρ are reported as q50(IQR). § means p ≤ 0.05 for
each iteration, # means p ≤ 0.05 for more than 90 itera-
tions.

Features
√
MSE (weeks) R2

Best eleven 2.05(0.44) .64(.14) §
PLV matrix 2.72(0.66) .37(.26) §
ASI matrix 2.80(0.57) .37(.25) §
k2xy(δ) matrix 3.19(0.91) .16(.51) §
k2xy(θ) matrix 2.63(0.43) .40(.30) §
k2xy(α) matrix 2.85(0.58) .35(.23) §
k2xy(β) matrix 2.63(0.43) .42(.20) §

Table 2: Comparison between the different multivariate
regression models to predict PMA. MSE and R2 are re-
ported as q50(IQR). § means p ≤ 0.01 for each iteration.

evolution of the brain with lowest
√
MSE. The selected

ASI indexes cover most of the brain region: posterior, an-
terior and left (ASIPOST , ASILEFT , ASIANT ). It can
also be noticed that auto-ASI (the ASI computed between
a channel and itself) of channels C4, C3, O1 and O2 are
listed in the top eleven. Figure 2 shows the linear re-
gression between ASIPOST and PMA, where a positive
correlation can be seen, as reported in Table 1 and in [1].
Table 2 shows the performance of the regression mod-
els using a multivariate approach. The combination of
best features in a linear multivariate regression increases
the prediction performance, i.e. the total

√
MSE is re-

duced to 2.05 weeks, as shown by Table 2. The median
fraction of explained variance is R2 = .64 (p ≤ 0.01).
Table 2 compares the performance also with the other
models where the features come from the 6 FC connec-
tivity matrices, as described above. However, the model
in which best features are selected outperforms the other
ones. One can also observe that matrices of coherence in
β and θ bands have better performances in terms of MSE
and R2 compared to the nonlinear index matrices, whose
prediction power is comparable with the best individual
features in Table 1. All the regression models were sta-
tistically significant in all 100 iterations.
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4 Discussions

As discussed by [3], the brain maturation is reflected
by the progressive disappearance of bursts in the EEG,
leading to a more continuous waveform. Indeed, the mat-
uration modifies the amplitude distribution in the signal,
making the SC a good predictor of PMA [3]. By com-
bining different FC measures a better model for the pre-
diction of PMA was obtained. Further, these results are
comparable with the ones obtained by [7], whose slightly
lower MSE can be explained by the usage of a smaller co-
hort of babies and a more complex regression model. Be-
sides the methodological aspects, interesting neurophys-
iological aspects emerge. The coherence decreases with
the postnatal maturation, as shown by Table 1 and Fig-
ure 1. Meijer [6] highlighted that this reduction is on one
hand a consequence of the EEG waves evolution (reduc-
tion of bursts, that are also called δ bursts or brushes), on
the other hand of the development of more localized and
decentral connections for specific tasks. In the early de-
velopment, the infant brain is moving from thalamocor-
tical connections to cortico-cortical connections, which
tend to separate the brain region from a functional point
of view. This is also reflected by the relative increase of
EEG power in β band, as shown in [7] and [4]. An impor-
tant aspect of this study is that the decrease of coherence
was accompanied by an increase of ASI , i.e. an increase
of synchrony of neonates’ cerebral activity [1]. It is inter-
esting to notice that some of the best individual features
to predict age are the auto-ASI, as symptom of more lo-
calized connections. For sake of completeness, the in-
crease in auto-ASI values can be due to the reduction of
the discontinuity pattern in the infant EEG with matura-
tion. Moreover, both ASI and coherence in β bands are
showing left spatial indices more correlated with PMA,
probably due tot the left asymmetry shown by [1].

5 Conclusion

The study showed that FC connectivity measures can
improve the PMA prediction performance compared to
EEG features, like SC, by means of multivariate linear
regression. In addition, FC connectivity changes with the
postnatal maturation. In particular, the EEG coherence
in β band and ASI show specific trends with PMA: the
first one decreases and the latter one increases with in-
creasing age. This might be a consequence of the shift
from thalamocortical to cortical-cortical connections in
the neonates cerebral networks.
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Abstract 

The central control of autonomic nervous system 
(ANS) and the complex interplay of its components 
can be described by a functional integrated mode - 
the central-autonomic-network (CAN). CAN 
represents the integrated function and interaction 
between, the central nervous system (CNS) and 
ANS (parasympathetic and sympathetic activity). 
This study investigates the CAN analyzing heart 
rate (HR), blood pressure and frontal EEG in 17 
healthy subjects (CON). The objective of this study 
is to determine how these couplings (central-
autonomic) are composed by the different 
regulatory aspects of the CNS-ANS. We found that 
CAN were of bidirectional character, and that the 
causal influences of central activity towards HR was 
stronger than those towards systolic blood pressure 
(SYS). This suggests that the central-cardiac 
regulation process (closed-loop) in CON is mainly 
focusing on changing/ adapting the heart rate via 
the sinoatrial node than focusing on SYS. The CNS-
ANS coupling directions with respect to central 
spectral power bands were mostly characterized as 
bidirectional where HR and SYS acting as the driver 
in nearly each frequency band (unidirectional for α, 
α1 and α2). This study provides a more in-depth 
understanding of the interplay of neuronal and 
autonomic regulatory processes in CON and a most 
likely greater insight into the complex CAN. 

Keywords autonomous nervous system, causal 
coupling analysis, central-autonomic-network, partial 
directed coherence

1 Introduction 

The neurovisceral integration model suggests that 
neural networks implicated in emotional and cognitive 
self-regulation are involved in the control of cardiac 
autonomic activity. Frontal, cingulate and subcortical 
brain regions have been hypothesized to play a critical 
role in such self-regulatory functions through top-down 
control from the frontal cortex over subcortical regions 
involved in reward and emotion, such as the amygdala 
[1]. A recent meta-analysis [2] revealed that resting heart 
rate variability (HRV) is tied to the functioning of 

frontal-subcortical circuits. Higher resting HRV is 
associated with the effective functioning of frontal-top-
down control over subcortical brain regions that support 
flexible and adaptive responses to environmental 
demands [3]. Cardiovascular adjustments due to a shift 
in central autonomic control and remodeling of the heart 
are most prominent features of exercising [4]. It has been 
suggested that a reduced sympathetic modulation and an 
increased parasympathetic dominance may be caused by 
adaptations of peripheral and central regulatory systems 
[5]. Cardiovascular centers in the brainstem work 
through various cardiovascular reflex mechanisms such 
as the baroreflex, the chemoreflex and the 
cardiopulmonary reflex [6]. It has been assumed that 
various autonomic function processes are generated by a 
network of interaction showing specificity for task and 
autonomic division. For healthy ones, Beissner et al. 
suggested that asymmetric frontal EEG responses to 
emotional arousal in the form of positive and negative 
emotions may elicit different patterns of cardiovascular 
reactivity [7]. 

The aim of this study was to investigate the central-
autonomic-network (CAN) by determining the causal 
coupling (strength and direction) in healthy subjects 
applying the normalized short-time partial directed 
coherence (NSTPDC). Investigating healthy subjects, we 
determine whether significantly different correlations 
existed between changes in EEG activity at the frontal 
lobe and changes in heart rate, as well as in systolic blood 
pressure. 

2 Methods 

2.1 Subjects 

In this study, 17 healthy subjects (CON; 4 females, 
mean age 37.7±13.1 years) were enrolled. Interviews and 
clinical investigations were performed for CON to 
exclude any potential psychiatric or other diseases, as 
well as to double-check for any interfering medication. 
The structured clinical interview and a personality 
inventory (Freiburger Persönlichkeitsinventar) were also 
applied to the subjects to detect personality traits and any 
disorders which might influence autonomic function. All 
participants provided their written informed consent to a 
protocol approved by the local ethics committee of the 
Jena University Hospital. This study complies with the 
Declaration of Helsinki. 
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2.2 Data recordings and pre-processing 

From all healthy subjects, a 3-channel short-term ECG 
(500 Hz), a non-invasive continuous blood pressure (200 
Hz) and a 64-channel EEG were recorded synchronously 
for 15 minutes. The EEG was acquired using 64 active 
Ag/AgCl electrodes, and transmitted via a BrainAmp 
Amplifier (Brain Products, Germany, sampling rate 500 
Hz, AFZ: ground, FCZ: reference). The electrodes were 
positioned according to the extended 10-20-system using 
an electrode cap. The impedance levels (<25 KΩ) for all 
electrodes were checked following attachment of the 
electrode cap to each participant’s scalp. The arterial 
blood pressure was recorded using the volume-clamp 
photoplethysmographical blood pressure device 
Portapres Model-2 (TNO Biomedical Instrumentation, 
Netherlands). All subjects' recordings were started after 
a supine resting period of 10 minutes. Subjects were 
asked to close their eyes, relax and breathe normally to 
avoid hyperventilation.  

The following time series with respect to autonomous 
regulation were automatically extracted from the raw 
data records: 
− Heart rate (lead I) consisting of successive beat-to-beat 

intervals (BBI, [ms]), 
− Maximum successive systolic blood pressure 

amplitude values in relation to the previous R-peak 
(SYS, [mmHg]), 

− Mean power PEEG from the EEG (in relation to each 
RR-interval). 
EEG recordings (without any stimulation) were band-

pass filtered (0.05Hz-60 Hz, Butterworth filter, order=3) 
in order to remove slow drifts resulting from slow body 
movements or sweating, and to prevent higher frequency 
content from additional noise.  

For EEG analyses, artefact-free time series from the 
frontal area (the frontal area (Fp1, Fp2, AF3, AF4, AF7, 
AF8, Fz, F1, F2, F3, F4, F5, F6, F7, F8, FC1, FC2, FC3, 
FC4, FC5, FC6, FT7, FT8, FT9, FT10) were used. Based 
on the PEEG, new time series consisting of the EEG 
spectral band components as delta (0.5-3.5 Hz), theta 
(3.5-7.5 Hz), alpha (7.5-12.5 Hz), alpha1 (7.5-9.5 Hz), 
alpha2 (9.5-12.5 Hz), beta (12.5-25 Hz), beta1 (12.5-17.5 
Hz), beta2 (17.5-25 Hz) and gamma (>25-60 Hz) activity 
were derived (Butterworth filter, order=3). The resulting 
filtered time series (PEEG, PEEGδ, PEEGθ, PEEGα, PEEGα1, 
PEEGα2, PEEGβ, PEEGβ1, PEEGβ2 and PEEGγ, [µV2]) were used 
for further analyses. 

All extracted time series (autonomous, central) were 
filtered by applying an adaptive variance estimation 
algorithm to remove and interpolate seldom occurring 
ventricular premature beats and artefacts (e.g., 
movement, electrode noise and extraordinary peaks) to 
obtain normal-to-normal beat time series (NN). To 
obtain synchronized time series, BBI, SYS, PEEG and 
PEEGbands were resampled using a linear interpolation 
method (2 Hz). 

 
 

2.3 Normalized short-time partial 
directed coherence 

To quantify the central-autonomic-network related to 
the causal coupling between the CNS- and ANS time 
series, the NSTPDC approach was applied [8]. It is based 
on a multivariate autoregressive model with model order 
p to determine linear Granger causality in the frequency 
domain basing on the time-variant partial directed 
coherence approach (tvPDC). For the selection of the 
optimal order p of the AR(p) model the stepwise least 
squares algorithm and the Schwarz’s Bayesian Criterion 
(SBC) were used. With the view to determine the 
coupling strength and direction between two time series, 
e.g. BBI and PEEG, a coupling factor (CF) was proposed. 
CF was obtained by dividing the mean value of PEEG 
coupled with BBI by the mean value of BBI coupled with 
PEEG. Afterwards, the results were normalized to a 
specific set of values leading to the normalized factor 
(NF). The normalization factor NF determines the 
strength and the direction of all causal links between a 
set of multivariate time series as a function of frequency 
f.  

The NF can take the following values:  
NF = {−2, −1, 0, 1, 2}.  
Strong unidirectional coupling is indicated if NF is 

equal −2 or 2, bidirectional coupling with the 
determination of the driver-responder relationship exists 
if NF is equal−1 or 1, and a similar influence in both 
directions and no coupling is present if NF is equal to 0. 
Here, NSTPDC indices were calculated by applying a 
window (the Hamming window) of lengths l, with l=80 
samples and a shift of 20 samples (60 samples overlap 
between each window).  

In addition to NF, the areas (ABBI→PEEG, APEEG→BBI, 
[a.u.]) were determined for identifying the coupling 
strength using a trapezoidal numerical integration 
function to approximate the areas generated in space by 
CF values (one CF in each window). ABBI→PEEG and 
APEEG→BBI take values from the range of [0,1]. 
APEEG→BBI=1 indicates that all causal influences 
originating from central part are directed toward BBI, 
APEEG→BBI=0 indicates that the central part does not 
influence BBI. Thereby, arrows (→) indicating the 
causal coupling direction from one time series to the 
other one, e.g., BBI←PEEG, indicates the causal link from 
PEEG to BBI. Thus, ABBI→PEEG represents the causal 
coupling strength for the causal link from BBI to the 
central part (PEEG) and APEEG→BBI represents the causal 
coupling strength for the causal link from PEEG to BBI. 

All results were presented as mean ± standard 
deviation. 

3 Results 

Concerning the coupling of the ANS (BBI, SYS) with 
CNS (PEEG), we found for the entire frontal area that the 
coupling strength from CNS to ANS (APEEG→BBI=0.23) 
were increased compared to the direction from ANS to 
CNS (ABBI→PEEG=0.10) (table 1, figure 1). Furthermore, 
the coupling strength from ANS to CNS (ASYS→PEEG) and 

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

42



from CNS to ANS (APEEG→SYS) revealed a similar 
behavior (0.13 vs. 0.14) in both directions (table 2, figure 
1). For the coupling between BBI and PEEG it was shown 
that mean NF was −0.64 pointing to a bidirectional 
coupling from PEEG→BBI, with the driver being PEEG, 
and BBI the target variable. For the coupling between the 
systolic blood pressure (SYS) and PEEG we revealed 
mean NF values of nearly 0, indicating an equal coupling 
influence in both directions. 

Table 1: Results (NSTPDC) of the causal central-
autonomic coupling analysis of BBI (beat-to-beat 

intervals) with PEEG (the mean power in BBI-related 
EEG intervals) for healthy subjects for the frontal area. 

 
 

Table 2: Results (NSTPDC) of the causal central-
autonomic coupling analysis of SYS (maximum systolic 
blood pressure amplitude values over time) with PEEG 

(the mean power in BBI-related EEG intervals) for 
healthy subjects for the frontal area. 

 
 

Table 3: Coupling directions (NF: normalization factor) 
of healthy subjects for the frontal area. (↔ indicates 
bidirectional coupling, → indicates unidirectional 

coupling, − indicates equal influence in directions or no 
coupling, d: denotes the driver variable, BBI: beat-to-
beat intervals, SYS: maximum systolic blood pressure 

amplitude values over time, PEEGband: the mean power in 
the BBI related EEG-spectral band intervals). 

 

 

Considering the spectral bands (e.g. PEEGδ), CAN 
(BBI−PEEGbands) revealed that for nearly all spectral band 

components with the exception of PEEGδ and PEEGγ (− 
equal influence) BBI was the driver (table 3, figure 2). 
Furthermore, we found for nearly all the spectral bands 
that the coupling strengths from ANS to CNS 
(ABBI→PEEGbands) were increased compared to the opposite 
direction (APEEGbands→BBI) with the exception of the γ 

band (ABBI→PEEGγ) where the strongest influence of 
central activity towards BBI was found (figure 2). The 
fact that BBI influences the central spectral components 
stronger is the opposite of that was found for the central-
autonomic coupling (APEEG→BBI) where PEEG had a 
stronger influence on BBI (table 1). 

 

Figure 1: Averaged NSTPDC plots for the central-
autonomic-network analyses for healthy subjects. 

Arrows indicating the causal coupling direction from 
one time series to the other one (e.g., BBI←PEEG: causal 
link from PEEG to BBI). Coupling strength ranges from 
blue (no coupling) to red (maximum coupling). With 
BBI - beat-to-beat intervals, SYS - successive systolic 

blood pressure values over time, and PEEG - mean power 
in BBI-related EEG intervals. 

 
Figure 2: Visualization of coupling strength between 
autonomic activity (BBI, SYS) and central spectral 
activity (PEEGband: δ, θ, α, α1, α2, β, β1, β2, γ) for 
healthy subjects. Arrows indicate the coupling 

direction, where black solid lines indicate the direction 
from driver variable towards the target variable (line 

width represents the coupling strength). 
 

The results of causal coupling between SYS and 
PEEGbands revealed comparable results. The autonomic 
part (SYS) stronger influences the central spectral 
components (PEEGbands) as it was also shown for BBI. 
In detail, PEEGβ, PEEGβ1, PEEGβ2, PEEGδ and 
PEEGθ revealed bidirectional coupling (mean NF~1.3) 

mean ± std mean ± std mean ± std mean ± std mean ± std
NF -0.64 ± 0.86 1.31 ± 0.65 1.28 ± 0.69 1.32 ± 0.62 0.84 ± 0.90

ABBI→PEEG 0.10 ± 0.05 0.25 ± 0.06 0.24 ± 0.07 0.25 ± 0.06 0.23 ± 0.07

APEEG→BBI 0.23 ± 0.16 0.08 ± 0.06 0.08 ± 0.09 0.08 ± 0.07 0.12 ± 0.09

mean ± std mean ± std mean ± std mean ± std mean ± std

NF 1.07 ± 0.79 0.82 ± 0.97 0.26 ± 0.96 -0.34 ± 1.00 0.85 ± 0.93

ABBI→PEEG 0.24 ± 0.07 0.23 ± 0.07 0.18 ± 0.06 0.17 ± 0.08 0.20 ± 0.07

APEEG→BBI 0.10 ± 0.08 0.12 ± 0.10 0.16 ± 0.11 0.28 ± 0.18 0.11 ± 0.09

B
B

I/
P

E
E

G

β

β1 β2 δ γ θ

frontal α α1 α2

mean ± std mean ± std mean ± std mean ± std mean ± std
NF 0.00 ± 1.07 1.71 ± 0.49 1.66 ± 0.59 1.70 ± 0.52 1.36 ± 0.81

ASYS→PEEG 0.13 ± 0.07 0.32 ± 0.09 0.31 ± 0.09 0.31 ± 0.08 0.29 ± 0.09

APEEG→SYS 0.14 ± 0.10 0.04 ± 0.03 0.05 ± 0.05 0.04 ± 0.04 0.07 ± 0.06

mean ± std mean ± std mean ± std mean ± std mean ± std

NF 1.51 ± 0.69 1.32 ± 0.87 0.84 ± 0.91 0.12 ± 1.11 1.33 ± 0.79

ASYS→PEEG 0.31 ± 0.09 0.29 ± 0.10 0.22 ± 0.08 0.20 ± 0.10 0.26 ± 0.09

APEEG→SYS 0.06 ± 0.05 0.07 ± 0.06 0.09 ± 0.06 0.16 ± 0.10 0.06 ± 0.05
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PEEGδ ‒ ‒ PEEGδ ↔ SYS
PEEGθ ↔ BBI PEEGθ ↔ SYS
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PEEGα1 ↔ BBI PEEGα1 → SYS
PEEGα2 ↔ BBI PEEGα2 → SYS
PEEGβ ↔ BBI PEEGβ ↔ SYS
PEEGβ1 ↔ BBI PEEGβ1 ↔ SYS
PEEGβ2 ↔ BBI PEEGβ2 ↔ SYS
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with the driver SYS. SYS was also the driver towards α 
central activity (PEEGα, PEEGα1, PEEGα2) but here the 
mean NF≥1.7 points to an unidirectional coupling. The 
causal connection between SYS and the γ activity 
(PEEGγ) indicated to an equal influence in both 
directions (mean NF~0.1) as already shown for BBI 
(table 3, figure 2). 

4 Discussion and conclusions  

In this very extensive study we found that the central-
cardiac coupling in healthy subjects is a bidirectional 
one, with central driving mechanisms (PEEG→BBI) 
towards autonomic system (BBI) in CON. This suggests 
that the central-cardiac regulation process (closed-loop) 
in CON is mainly focusing on changing/ adapting the 
heart rate via the sinoatrial node than focusing on SYS. 

The central-vascular coupling analysis demonstrated 
that the coupling strength is equal in both directions 
(PEEG↔SYS). This closed-loop in CON indicates a 
balanced relation (APEEG→SYS corresponding to 
ASYS→PEEG, NF~0) between central and vascular 
regulation processes. The lower influence of central 
activity towards the vascular system might be due to that 
blood pressure is mainly regulated by the ANS via the 
baroreflex control loop. The central-cardiac and central-
vascular coupling directions with respect to central 
spectral power bands were mostly characterized as 
bidirectional with BBI and SYS acting as the driver in 
nearly each frequency band (unidirectional for α, α1 and 
α2). This may suggest that the autonomous system 
provides feedback information towards the different 
central oscillatory components (with the exception of γ 
and δ). All these components together might be 
considered as the whole central activity provide, in turn, 
feedforward information to the ANS. Different studies 
were published concerning cognitive processes of 
healthy subjects. These studies are related to oddball 
paradigms with results on target and standard stimuli, 
working paradigm and simple auditory and visual-
evoked potentials. The enhancement of delta and theta 
responses, prolongation of alpha oscillations, and the 
appearance of a second theta response window are some 
of the relevant features of the target response [9]. In this 
study, however, we investigated for the first time the 
CAN under resting conditions.  

The output of the CAN is directly linked to HRV. In 
addition, sensory information from peripheral end organs 
such as the heart and the immune system are feedback to 
the CAN, one important example of which is the 
baroreceptor reflex. As such, HRV is an indicator of 
central-peripheral neural feedback and CNS-ANS 
integration [10].  

In this regard, it must be considered that the 
interactions between the CNS and ANS can be assumed 
to be a feedback-feedforward system which supports 
flexible and adaptive responses to environmental 
demands. This study improves the understanding of 
physiological processes of the central-autonomic 
network in healthy subjects without any stimulation. 
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Abstract 

Several cardiovascular mechanisms exhibit both 
linear and nonlinear interactions. A linear 
approximation of these interactions cannot capture 
the nonlinear dynamics rendering results 
incomplete, while nonlinear methods generally do 
not distinguish between linear and nonlinear 
relationships. In this study, we investigated 
whether nonlinear analysis (transfer entropy 
analysis) of a linear model’s residuals can provide 
this distinction. The linear dynamics in the data 
were captured using a linear autoregressive 
model. Transfer entropy analysis was applied to 
the model residuals to investigate whether they 
hold information regarding nonlinear dynamics. 
This procedure was tested on simulated data and 
then applied to real data to study the relationship 
between muscle sympathetic nerve activity 
(MSNA) and repolarization variability (QT). Results 
from simulated data show that the procedure was 
able to separate linear and nonlinear dynamics. 
While analysis of real data showed that a linear 
model was adequate for quantifying QT-MSNA 
relationship since no information transfer was 
detected in the residuals.     

Keywords linear, nonlinear, cardiovascular, 

transfer entropy. 

1 Introduction 

The cardiovascular system exhibits complex 

interactions between cardiac, vascular and neural 

mechanisms, which can be represented by a class of 

linear parametric multivariate models [1].  The residuals 

of these models are usually attributed to noise, 

nonlinearities or other mechanisms unaccounted for by 

the model [2, 3]. While the linear approximation of 

these mechanisms is widely accepted and used by many 

researchers in the field, this notion has not been 

investigated thoroughly against the null hypothesis of a 

nonlinear relationship [1]. This might render results 

related to the variability unexplained by the model 

inconclusive. Indeed, employing linear models in the 

presence of both linear and nonlinear system 

characteristics means that any nonlinear interactions are 

overlooked and remain confined in the model residuals 

[4]. Nonlinear methods have also been employed for the 

analysis of cardiovascular variability [1, 5-7]. However 

these methods generally cannot separate linear and 

nonlinear interactions. It has been suggested that 

analysis of a linear model’s residuals might be fruitful 

for exploring nonlinear aspects of the system under 

investigation [4]. We hypothesize that, using a 

nonlinear method, the analysis of a linear model’s 

residuals can separate nonlinear from linear interactions 

in systems where both type of interactions are present. 

In this paper, the proposed analysis was restricted to an 

open-loop autoregressive model with two external 

drivers (ARXX). Analysis was carried out on both, 

simulated and real data comprising beat-to-beat values 

of heart period (RR), muscle sympathetic nerve activity 

(MSNA) and ventricular repolarization duration of the 

heart (QT). Changes in beat-to-beat QT have been 

suggested to reflect changes in the level of sympathetic 

outflow to the heart [8, 9]. MSNA is an invasive 

measure of postganglionic sympathetic nerve activity 

measured in the peroneal nerve [10]. To investigate the 

extent to which repolarization variability can be used as 

a noninvasive measure of sympathetic activity, we 

studied the relationship between beat-to-beat changes in 

QT and MSNA. Sympathetic activity and RR are 

thought to exhibit influences on QT in a feed forward 

fashion, hence an open-loop ARXX model was selected 

for this specific study.     

2 Materials and Methods 

To test our hypothesis, a linear autoregressive model 

with two external inputs (ARXX) [11] combined with 

standard system identification procedures was employed 

to quantify linear relationships within bivariate data. 

Subsequently, information domain analysis based on 

transfer entropy [5] was used to investigate the presence 

of any remaining, nonlinear relationships in the model 

residuals.  

Linear model residuals 

A parametric linear autoregressive model with two 

external inputs defined as 

𝐴𝑌(𝑧) 𝑌(𝑛) = 𝐵1(𝑧) 𝑋(𝑛) +  𝐵2(𝑧) 𝑍(𝑛) +  𝑤𝑌(𝑛), (1)

was used to represent the data. In Eq. 1, Y is the target 

variable, and X and Z are external input variables which 

are not modulated by Y. Also, 𝐴𝑌 , 𝐵1 , and 𝐵2  are 

polynomials of the model parameters in the z-domain, 

𝑤𝑌 is a white Gaussian noise source, and 𝑛 is the sample 

number. X and Z were modeled as independent 

autoregressive processes. Details of the model structure 

are described in [11], while details of the adopted model 
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estimation and validation procedures are described in 

[2]. After model estimation and validation, the estimated 

model parameters were used to filter out the variance of 

the target variable Y which is not explained by the 

model; i.e. model residuals [3].  

Nonlinear analysis of the residuals 

To test whether the residuals hold any information 

regarding nonlinear dynamics from the inputs to the 

output, a binning estimator with non-uniform embedding 

was used to estimate the information transfer from X to 

the residuals of Y (TEX->Y) in the case of simulated data, 

and the conditional information transfer from Z to the 

residuals of Y given X (TEZ->Y|X) for both simulated and 

real data [5]. The same analysis was carried out on the 

original data to compare the detection of information 

transfer with and without the linear component. 

Simulated data 

In order to test the ability of the proposed procedure to 

distinguish linear from nonlinear interactions, we used 

simulated data generated from a non-linear 

autoregressive model with two external inputs defined as 

in Eq. 2-4. The simulation model was adapted from [12]. 

 
𝑌(𝑛) =  0.707 𝑌(𝑛 − 1) − 0.5 𝑋2(𝑛 − 2) 

                                  + 0.3536 𝑍(𝑛 − 1) +  𝑤𝑌(𝑛),               (2) 

𝑋(𝑛) = 0.3536 𝑋(𝑛 − 1) − 0.2025 𝑋(𝑛 − 2) + 𝑤𝑋(𝑛),    (3) 

𝑍(𝑛) = 0.707 𝑍(𝑛 − 1) − 0.707 𝑍(𝑛 − 2) + 𝑤𝑍(𝑛).         (4) 

  
Eq. 2 shows that Y is a combination of a linear function 

of its own past and Z, and a nonlinear function of X. On 

the other hand, X and Z are represented by two 

independent linear autoregressive models. Also, 

𝑤𝑌 , 𝑤𝑋, 𝑎𝑛𝑑 𝑤𝑍 are uncorrelated Gaussian white noises 

with zero mean and unit variance. 

 

Real data 

We studied 10 healthy subjects selected from a 

previously published study [13]. Continuous signals of 

lead III ECG, arterial blood pressure and muscle 

sympathetic nerve activity (MSNA) were recorded 

simultaneously for 10 minutes in supine and 40 degrees 

tilt in each subject with a sampling frequency of 1600 

Hz. Beat-to-beat series of the heart period (RR) and 

repolarization duration series, measured as the temporal 

distance between the onset of the Q-wave and the end of 

the T-wave (QT) were obtained using an algorithm 

recently proposed in [14]. MSNA was used as a 

surrogate for sympathetic activity. Beat-to-beat MSNA 

series were obtained by calculating the time average of 

the integrated MSNA signal between two consecutive 

diastolic points to compute the average MSNA per beat. 

For each subject, data segments of around 200 beats 

were selected for the analysis. Data were detrended 

using the smoothness priors method described in [15], 

then normalized to zero mean and unit standard 

deviation. 

Statistics 

Paired t-test was used to test whether the estimated 

transfer entropies computed from simulated data were 

different to those computed from their residuals. 

Wilcoxon sign rank test was used to test for differences 

in the transfer entropy estimated in supine and tilt 

conditions, using both real data and its residuals. Values 

of p < 0.05 were considered statistically significant. 

3 Results 

Simulated data 

The linear model fit to the simulated data was 58% ± 

4.0% (mean ± SD). Table 1 shows that the estimates of 

the parameters related to the linear components (AY and 

B2) were acceptably close to their simulated values, 

while the parameter related to the nonlinear component 

(B1) were poorly estimated. 

 

 

Parameter  Simulated Estimated (mean) 

AY(z) 0.707z
-1

 0.719 z
-1

 

B1(z) -0.5z
-2

 -0.015 z
-2

 

B2(z) 0.3536z
-1

 0.285 z
-1

 

Table 1: ARXX model simualted and estimated 

parameters. 

Fig. 1 shows the results of the transfer entropy 

estimated using both; simulated data and the residuals 

resulting from fitting the simulate data to the linear 

ARXX model. TEZ->Y|X was significantly reduced in the 

residuals compared to the data (p < 0.0001), while the 

estimated TEX->Y remained unchanged (p > 0.3). 

 

Cardiovascular data 

The linear model fit to the cardiovascular data was on 

average 51% in supine and 41% following tilt. Fig. 2 

shows the transfer entropy from MSNA to QT given RR 

(TEMSNA->QT|RR) estimated using both; real data and the 

residuals resulting from fitting the real data to the linear 

ARXX model. TEMSNA->QT|RR demostrated a slight 

insignificant increase using real data (p > 0.5), while the 

information transfer was negligible (median = 0.027) in 

the residuals in the supine position, and  not detected 

(median  = 0) following tilt. TEMSNA->QT|RR computed 

from the residuals was decreased compared to real data 

in both supine and tilt. However this decrease was not 

statisticall significant (p >  0.1 for both supine and tilt 

conditions). 
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Figure 1: Information transfer from the inputs to Y 

estimated from simulated data and residuals. (A) 

information trasfer from X to Y (TEX->Y), and (B) 

conditional information transfer from Z to Y given X 

(TEZ->Y|X). Values shown are mean ± std. * indicates a 

signifcant difference.  

 

 

Figure 2: Conditional information transfer from MSNA 

to QT give RR (TEMSNA->QT|RR) estimated from real data 

and residuals. Values shown are median (25th – 75th 

percentiles). 

4 Conclusions  

The cardiovascular system consists of complex 

interactions between different subsystems involving 

both linear and nonlinear dynamics. Linear estimations 

of these interactions render result inconclusive as 

nonlinearities are confined in the residuals [4], while 

nonlinear estimations do not distinguish linear from 

nonlinear dynamics.    

 

Simulated data 

In this paper we used simulated data to demonstrate 

that analysis of a linear model’s residuals can distinguish 

linear from nonlinear dynamics driving the system. The 

simulated model involves both linear and nonlinear 

dynamics. The good model fit and the estimation of the 

linear parameters show that the linear model was able to 

capture the linear dynamics adequately rendering the 

model residuals a reliable estimation of the true variance 

which cannot be explained by a linear model. Then, the 

transfer entropy was computed using both simulated 

data and residuals. TEX->Y was detected in both data and 

residuals, while TEZ->Y|X was only detected in the data. 

This shows that the procedure was able to separate and 

identify both; the linear component from Z to Y was 

filtered and captured by linear model, while the 

nonlinear component from X to Y remained in the 

residuals and was clearly identifiable using the transfer 

entropy method. 

Real data 

The proposed procedure was applied to real data 

consisting of QT, RR and MSNA. In a previous study 

[2], we used the same linear model to study the 

relationship between MSNA and QT variability in an 

attempt to investigate the extent to which QT variability 

can be used as a measure of sympathetic activity. Power 

contribution analysis showed that MSNA contribution to 

QT was small but not negligible. We concluded that 

MSNA might not exhibit influences on QT variability, 

or that these influences might be complex and not 

quantifiable using a linear model. To test whether 

MSNA exhibits nonlinear influences which might have 

been confined in the model residuals, we computed 

TEMSNA->QT|RR from both real data and the residual s (Fig. 

2).  TEMSNA->QT|RR was detected in the data but not the 

residuals, which supports the notion that MSNA does 

not exhibit nonlinear influences on QT variability at 

moderate levels of sympathetic activation.  Furthermore, 

the reduction in the transfer entropies estimated from the 

residuals compared to real data, despite being 

statistically insignificant, support the notion that the 

model in our previous study has captured the MSNA-QT 

dynamics adequately. 

In conclusion, we have displayed how analysis of a 

linear model’s residuals (using an ARXX model as an 

example) can distinguish linear from nonlinear 

dynamics. However, the clinical merit of this separation 

is yet to be established with further testing on larger 

datasets investigating cardiovascular mechanisms which 

are known to exhibit nonlinear dynamics; such as 

baroreflex [16, 17], and cardiac repolarization lability 

[18-20]. 
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Abstract

Surgery is an effective treatment for intractable
epilepsy where the seizure cannot be controlled
by medication. Intractable epilepsy is gener-
ally treated by removing epileptic foci and prop-
agation paths．It is, therefore, important to de-
termine epileptic foci and propagation paths in
surgery. Surgical site is determined by visual
inspection using magnetoencephalogram(MEG)，
MRI，electroencephalogram(EEG) and, electrocor-
ticogram(ECoG). However, diagnosis by visual in-
spection of a doctor is fraught with problems which
depends on the experience. We aim for establish-
ment of diagnostic indicator which can show quanti-
tative and objective evidence. In this paper, we pro-
pose a new connectivity analysis. In the connec-
tivity analysis, we calculate the maximum correla-
tion value and the delay time for each channel-to-
channel using correlation function from ECoG which
is recorded at preoperative evaluation. Next, we de-
fine connectivity strength using linear combination
of the maximum correlation value and its delay time
between channels of ECoG. Finally, the propaga-
tion structure1 of patients with intractable epilepsy is
estimated by using minimum spanning tree whose
edge length is connectivity strength. We estimated
the propagation structure of epileptiform discharges
from two ECoG who patients of intractable epilepsy
using connectivity analysis. As a result, each pa-
tient’s epileptiform discharges propagated from the
temporal lobe where epileptic foci were located to
the frontal lobe. We compared the estimated re-
sults and results of MEG that showed commonre-
sults. Therefore, the connectivity analysis we pro-
posed here is considered an effective analysis. We
believe that the connectivity analysis can become
an effective diagnostic indicator of quantitative and
objective evidence not use MEG of large system.

Keywords Biosignal and Image Interpretations, Con-
ference Paper, Instructions

1In this paper, we discriminate the term “propagation paths” and
“propagation structure.” The “propagation paths” means “propagation
structure” with direction of information flow.

1 Introduction

Epilepsy is a common cranial nerve disease that affects
up to 1% of the population. Seizure is caused by epilep-
tiform discharges propagating throughout the brain lead-
ing to loss of normal brain function. Epileptic seizures
have a lot of symptoms as they propagate throughout the
brain. About 75% of these patients can control seizures
by medication, but 25% of them cannot be cured by med-
ication, which is known as intractable epilepsy[1]. In-
tractable epilepsy can be treated by surgery[2]．Patients
are cured by removing epileptic foci and propagation
structure. In order to further improve the surgical out-
come and avoid any neurological deficits from the re-
moval of the lesion, the precise origin of the seizure ac-
tivity must be accurately localized[3]. Epileptic foci and
propagation paths are diagnosed by visual inspection of
doctor using ECoG, which is recorded for inspection be-
fore operation[4], MRI and, MEG. Visual inspection de-
pends on the experience of the doctor to diagnose epilep-
tic foci and propagation path of epileptiform discharges
from ECoG, less experienced doctors cannot accurately
diagnose the surgical site.

Connectivity analsysis has been a wide area in the
brain research these days. In particular, functional brain
network analysis of fMRI data is conducted by many
researchers. However, there are few research on con-
nectivity analysis of patients with epilepsy. Mizuno,
et.al. proposed a method estimating epileptic foci and
connectivity of epileptiform discharges, which was ob-
served from ECoG, using cross correlation map[5]. The
method, however, indicates only a cross-correlation map
of the channels in order to express the connectivities be-
tween the channls. After estimating the quantitative prop-
agation structure of epileptiform discharges using cross-
correlation function, visualization using a graph theory
has not been reported.

In this paper, we developed a new method of esti-
mation and visualization of epileptic foci and propaga-
tion structure of epileptiform discharges. We used cross-
correlation function and the minimum spanning tree of
graph theory. We estimated propagation structure of
epileptiform discharges from ECoG which were two pa-
tients ’data at seizure onset using connectivity analysis.
We consider the effectiveness of our method by compar-
ing two estimated results and the results of MEG.
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2 Methods

2.1 Data acquisition

We used the ECoG which was recorded on subdural for
inspection before operation2. Placement of intracranial
Electrodes of patient A are shown in Fig.1. Channel zero
to channel 15 were located at the left frontal lobe, channel
16 to channel 23, channel 40 to channel 44 were located
at the interior left temporal lobe and, channel 24 to chan-
nel 39 were located at the left temporal lobe. Placement
of intracranial electrodes of patient B are shown in Fig.2.
Channel zero to channel seven were located at the right
temporal lobe, channel eight to channel 15 were located
at the interior right frontal lobe and, channel 16 to chan-
nel 23 were located at the right interior temporal lobe.The
ECoG of patient A and patient B were shown in Fig.3
and Fig.4, respectively. The ECoG shown in green is
the frontal lobe, blue is the interior temporal lobe and,
red is the temporal lobe. Both patients lost their nor-
mal brain function after the propagation of epileptiform
discharges throughout the brain which was at around 35
seconds in patient A and around 25 seconds in patient B.
After that, the amplitude of epileptiform discharges de-
creased. Epileptiform discharges of patient A terminated
around 140 seconds. Epileptiform discharges of patient
B terminated around 130 seconds. After the termination
of epileptiform discharges, flat ECoG are observed for a
while.

Figure 1: Electrode layout of patient A

Figure 2: Electrode layout of patient B

2This study has been reviewed/approbed by Ethics Review Com-
mitte of Kindai University, Faculty of Medicine(21-135) and Faculty of
Biology-Oriented Science and Techonology(H26-1-008).

Figure 3: Electrocorticography: patient A

Figure 4: Electrocorticography: patient B

2.2 Connectivity analysis

First, we calculated cross-correlation function from
ECoG every channel-to-channel as follows:

ρij(τ) =
E[(xi(t)− µi)(xj(t− τ)− µj)]√

E[(xi(t)− µi)2]E[(xj(t− τ)− µj)2]
,

(1)

where xi and xj are ECoG of channel i and j, and µi and
µj are averages of xi and xj , respectively. E[·] shows
expected value and τ is the delay time. In this report,
the range of τ was from −0.1 seconds to 0.1 seconds.
Time averaging window for calculating correlation func-
tion was set to 1 second. Next, we searched the maximum
correlation value maxτ{|ρij |} and the delay time from
cross-correlation function ρij . Here, in order to elimi-
nate the influence of small value of the maximum corre-
lation maxτ{|ρij |} which is to be statistically uncorre-
lated, namely null hypothesis fails to reject with 99.9%
confidence interval using the z-test, was assinged as 0. In
the case of the maximum correlation value was 0, a delay
time τ was set to 0.1 second, which is the longest delay
time in this study. The correlation maps between channel
to channel is shown in Fig.5. Then we defined connectiv-
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Figure 5: Correlation map

ity strength as follows:

dij = α(1−max
τ

{|ρij(τij)|}) + (1− α)
|τij |

maxij{τij}
,

(2)

where max{ρij(τ)} is maximum correlation values of
each channel-to-channel with respect to τij . The delay
time is used which has been normalized by dividing by
the longest delay time maxij{τij} in this study. α is an
arbitrary constant which determines the weights of both
the maximum correlation term and the deley term. In this
study, α is set to 0.5, which is the weight of the maximum
correlation value and the delay time is equal. In order to
use the connectivity strength dij as edge length in con-
figure the minimum spanning tree, the lower values the
higher connectivity strength.

Finally, we configured minimum spanning tree using
connectivity strength to edges. We estimated and visual-
ized the propagation structure of epileptiform discharges.
The minimum tree is a undirected graph which does not
have closed path together with the minimal total weight-
ing for its edges. In other words, the estimated propaga-
tion structure results of epileptiform discharges formed in
this report assumes there is no ECoG loop between chan-
nels.

3 Results

The estimated minimal spanning tree of seizure onset
of patient A is shown in Fig.6. In the estimation re-
sults, circles indicate nodes and the number represents
the channel number. The colors of the circle indicate
the position of the channel. Light gray, gray and dark
gray present frontal robe, interior temporal robe and ex-
terior temporal robe, respectively. Also, the lines indicate
that the stronger the connectivity thicker the line. In this
study, a root node of the minimum spanning tree config-
ured the node which has the highest connectivity strength.

In the estimated results of propagation structure which
is the seizure onset of patient A, the channels located in
the left temporal lobe is first connected and then they are
connected to the interior left temporal lobe then the con-
nections are made to the left frontal lobe. Fig.7 shows
the estimated minimal spanning tree of seizure onset of

patient B. In the result of patient B, the channels located
in the right interior temporal lobe is first connected and
then they are connected to the right temporal lobe then
the connections are made to the right frontal lobe.

Figure 6: Estimated Spanning Tree: patient A

Figure 7: Estimated Spanning Tree: patient B

4 Discussion

Fig.8 shows the results of MEG of a sporadic epilep-
tiform discharge of patient A. The results indicate the
epileptiform spikes in red moving from the left tempo-
ral lobe to the interior left temporal lobe then finally to
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Figure 8: Result of MEG Analysis: patient A

Figure 9: Result of MEG Analysis: patient B

the left frontal lobe. As we mentioned earlier, the esti-
mated propagation structure of epileptiform discharges of
patient A begin at the left temporal lobe where the epilep-
tic foci were located. Then epileptiform discharge propa-
gates to the interior left temporal lobe, then finally to the
left frontal lobe. Both results show the same appearance
of propagation structure.

The results of MEG analysis of a sporadic epileptiform
discharge of patient B is shown in Fig.9. The reslts show
the epileptiform spikes in red moving from the right inte-
rior temporal robe, then spread out around them. Also,
the propagation structure of epileptiform discharges of
patient of B propagated from the interior right tempo-
ral lobe where the epileptic foci were located to the right
temporal lobe to the right frontal lobe. The results also
show similar appearance of propagation structure.

Since both results indicate a similar propagation struc-
ture, that our method used in this study is considered to be
effective in demonstrating the sporadic epileptiform dis-

charges and the onset of the epileptic seizure is similar.

5 Conclusion

We developed a new analysis method of connectivity
analysis using cross-correlation function and minimum
spanning tree based on the graph theory. Estimated prop-
agation structures of seizure onset obtained by proposed
method were similar to the results of the MEG analy-
sis. These results show the effectiveness of the method.
The connectivity analysis using ECoG for the propaga-
tion structure of epileptiform discharges enables quanti-
tative estimation without using a large-scale system like
MEG.
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Abstract 

Spontaneous hemodynamic signals of the brain 
express cooperativity between functional regions 
in the brain. To examine the functional connectivity 
between the regions, marginal correlation analysis 
is widely performed. However, many fMRI studies 
of human brain function have suggested that 
partial correlation analysis is more suitable to 
detect effective connectivity. In this study, we 
compared the functional connectivity networks 
estimated by the marginal and partial correlation 
analyses of optically measured hemodynamic 
signals of the mouse neocortex. It was confirmed 
that the functional network estimated by partial 
correlation analysis was sparser than that 
estimated by marginal correlation analysis. 
Correspondence of the former functional 
connectivity seemed more consistent with the 
physiological and the anatomical findings. Hence, 
it is suggested that the partial correlation analysis 
would be more suitable for detecting skeleton 
network of the mouse brain. 

Keywords Optical Intrinsic Signal (OIS) Imaging, 
Partial Correlation Analysis, Functional Connectivity, 
Resting-State Network (RSN)

1 Introduction 

Recent studies suggest that the resting-state network 
(RSN) of the human brain has a close relationship with 
psychiatric and neurological disorders [1][2]. Therefore, 
RSN analysis is expected to be a next-generation 
diagnostic method for these disorders. However, basic 
studies have been performed to reveal the mechanism 
and treatment of these disorders using mice because of 
applicability of various experimental methods including 
genetic engineering techniques [3]. Due to the small 
size of the mouse brain, optically measured 
hemodynamic signals are adopted for functional brain 
imaging and connectivity analysis instead of fMRI used 
in studies of human brain functions [4].  

To examine the functional connectivity in the acting 
brain, marginal correlation analysis is performed widely. 
It has been demonstrated that the analysis is useful for 
extracting subnetwork structures including default-
mode network [4]. Although functional connectivity 
between the brain regions tends to be interpreted as an 

implication of direct linkage between brain regions, it is 
inappropriate because marginal correlation does not 
imply actual connectivity between them. If two 
independent components were activated by a common 
driver, they would show strongly correlated activities. 
To examine “effective” connectivity in the brain, partial 
correlation analysis has been proved to be useful in the 
field of fMRI studies of human brain function [5][6]. 
However, so far, there is no report that partial 
correlation analysis was applied to hemodynamic 
signals that were optically measured from the mouse 
brain. 

In this study, we compared marginal and partial 
correlation analysis of the hemodynamic signals that 
were measured from the mouse neocortex. Based on the 
results and the previous findings obtained by the fMRI, 
anatomical and physiological studies, usability and 
plausibility of the partial correlation for the functional 
connection analysis of the cortical hemodynamic 
signals will be discussed. 

2 Materials and Methods 

2.1 Measurement 

All experimental procedures were approved by the 
Institutional Animal Care and Use Committee of 
Tohoku University and were performed according to 
the Japanese Government Animal Protection and 
Management Law (No. 105). All efforts were made to 
minimize animal suffering. 

 Six male mice (C57BL/6, 23-25 g) were used for this 
study. Experimental methods were described previously 
[7][8]. Briefly, to monitor local blood-volume change in 
the neocortex, optical intrinsic signals (green 
reflectance, 530 nm) were transcranially imaged with a 
cooled CCD camera (C9100-13, Hamamatsu Photonics, 
Japan) at 28 fps. Neocortical electroencephalograms 
(EEGs) and neck muscle electromyograms (EMGs) 
were also amplified and sampled at 1 kHz along with 
CCD exposure timings. During measurements, mice 
were maintained in a dark shielded cage. The 
sleep/wake stages of the animal were detected on the 
basis of the EEG and EMG signals according to the 
method by Veasey et al. [9]. Only the optical intrinsic 
signals (OIS) during quiet wakefulness were used in the 
present study. 
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2.2 Functional brain mapping 

The size of field of view of OIS image was 6×6 mm 
(Fig. 1A), which almost covered bilateral motor 
cortexes (M), somatosensory cortexes (S), parietal 
association cortexes (PtA), retrosplenial dysgranular 
cortexes (RSD), and visual cortexes (V). The OIS data 

( )x,tI  was given as functions of time t and space x. 

Spatial arrangement of the functional regions of the 
neocortex were identified by the independent 
component analysis (ICA)-based method [8] with 
reference to the mouse brain atlas (Fig. 1B) [10]. 
Briefly, the OIS data were decomposed into statistically 
independent components (ICs) by the fast ICA 
algorithm as follows: 

( ) ( ) ( )∑
=

=
N

i
ii tICAtI

1

, xx ,                         (1) 

where ICi(t) is the i-th ICs, Ai (x) is the spatial intensity 
map of the contribution of the i-th IC, and N is the 
number of ICs. In this study, we set N = 40. This 
formula is called spatial ICA and was introduced by 
McKeown et al. for fMRI data analysis [11]. Functional 
brain regions were estimated according to the spatial 
distribution of the spatial-intensity maps (Fig. 1C) with 
reference to the mouse brain atlas [10]. An example of 

the brain map of a mouse estimated by the method is 
shown in Fig. 1D.  

2.3 Functional connectivity analysis 

Before correlation analyses, the change of OIS 
intensity to the baseline intensity was calculated, band-
pass filtered in 0.008-0.09 Hz, and normalized [4][12]. 
For marginal correlation analysis, Pearson’s correlation 
(Ri,j) was calculated for the pair of OIS data Ii (t) and Ij 
(t), where Ii (t) is the green reflectance intensity in the i-
th region of interest (ROI) at time t (Fig. 1D). Marginal 
correlation matrix was given by )( , jiR=R . Partial 

correlation matrix )( , jiΠ=Π  was calculated according 

to the following definition [13]: 

( )
jjii

jiji
ji

CC

C

,,

,
, 1 +−=Π ,                         (2) 

where, 
jiC ,  represents the (i,j)-th cofactor of the 

marginal correlation matrix R. 

3 Results and Discussion 

Figure 2A shows an averaged marginal correlation 
matrix obtained from the neocortical OIS of resting-
state mice (n = 6). It was found that the observed area 
can be divided into 3 regions (subnetworks) according 

 
Figure 1: Functional brain mapping of the mouse neocortex by the combination of OIS imaging and ICA (A) The 
field of view of the OIS imaging (red square). (B) A typical spatial arrangement of functional regions of the mouse 
neocortex. The drawing was made according to ref. [10]. The circle indicates the position of bregma. (C) Color-
coded spatial-intensity maps of ICs superposed on the monochrome image of the skull. Intensity is normalized from 
0 to 1 and only the pixels of which normalized intensity >0.7 are depicted. (D) Overlaid functional maps estimated 
by the ICA. See text for abbreviations for the name of cortical regions. 
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to the positive correlation: (a) bilateral motor cortexes, 
(b) bilateral somatosensory cortexes and PtA, and (c) 
bilateral RSD and visual cortexes. In addition, these 
subnetworks were negatively correlated with each other 
except the motor and somatosensory networks (Fig. 2B). 
Most of strong negative correlations were found 
between the regions in the contralateral hemispheres. 

The positive correlation network was almost consistent 
with the previous fMRI studies of human [5][6] and 
mouse brain [3], except the RSD and the visual cortexes. 
It was reported that when the cerebral blood-flow 
signals were used, positive correlation between the RSD 
and visual cortexes was stronger than the value 
calculated using the oxygenated hemoglobin signals 
[14]. In the present study, single-wavelength OIS was 
used for the analysis, which is strongly affected by the 
blood flow. Since thick superior veins are located near 
the RSD and the visual cortexes [15], they would cause 
correlated changes of the blood flow/volume in those 
regions. Overall, the negative correlations were stronger 
than those in previous reports. This could be caused by 
the blood-volume conservation property in the brain. 

Next, partial correlation analysis was performed using 
the same OIS data to examine effective connectivity. As 
shown in Figs. 2C and 2D, the overall functional 
connectivity network was sparser than the network 
estimated by the marginal correlation analysis.  

Interhemispheric positive correlations were also 
detected in the motor, the somatosensory and the PtA 
cortices as well as the marginal correlation analysis. In 
contrast, correlation between the RSD and the visual 
cortex was not evident. Thus, these results were more 
consistent with the previous studies. Correlation 
between the left and right visual cortices was weak. 
Since the experiments were performed in the dark cage 
in this study, activities in the visual cortexes would be 
uncorrelated. 

Negative correlations between the regions in the same 
hemisphere were significantly fewer than the marginal 
correlation analysis. However, many interhemispheric 
negative connections were also found by the partial 
correlation analysis. So far, many physiological and 
anatomical studies have proved existence and functional 
significance of interhemispheric inhibitory connections 

 

 

Figure 2: Marginal (A, B) and partial (C, D) correlation analyses for resting-state activities of the mouse neocortex. 
Magnitude of the correlation coefficient (r) is color-coded. In the correlation network diagrams (B and D), the 
neocortical regions are represented as nodes (circles) and correlation coefficients between the regions are depicted as 
color-coded edges. Only the edges with |r| > 0.2 are drawn.  
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[16][17]. Thus, it is suggested that these synaptic 
connections would underlie the negative correlations 
detected by the partial correlation analysis. 

4 Conclusions  

In this study, we compared functional connectivity 
networks estimated by marginal and partial correlation 
analyses of the transcranially imaged optical intrinsic 
signals of the mouse neocortex. It was found that the 
partial correlation estimates sparser functional 
connectivity network than marginal correlation. 
Furthermore, interhemispheric inhibitory connections 
remain even in the sparse partial correlation network. 
Correspondence of the functional connectivity 
estimated by partial correlation analysis seemed more 
straightforward to the physiological and anatomical 
connections. Thus, it is suggested that the partial 
correlation analysis would also be more suitable for 
detecting skeleton of the network underlying correlated 
activities of the mouse brain.  
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Abstract 

Brain is one of the most complex systems, 
made up of many components. In order to 
understand the system of the brain, we will need 
to extract information regarding how the many 
components, neurons, interact each other. This 
report and presentation will review how we could 
extract interactions among more than several 
hundred neurons meaningfully, and by this could 
reach new findings presented as a unified network 
system consisting of mutually connected neurons. 
The new picture will provide us more accurate 
and comprehensive understandings of the 
intertwined complex interactions among neurons 
(Microconnectome).

Keywords    Network, Information, Microconnectome,
Neuroscience

1	   Introduction 

    Brain holds network organizations at both of 
macroscopic and microscopic scales. At the same time, 
nervous systems are organisms, which have been 
designed for processing information to survive in the 
evolutional process [1]. Although it is obvious that the 
microscopic neurons show network organizations by 
connecting each other through axons and dendrites, the 
quantitative evaluations of the network organization of 
many neurons, Microconnectome, is still almost 
completely unknown. Furthermore, if we want to 
understand how there emerge various functions from 
the network organization, we need to quantify the 
information flow, effective networks, coming from 
electrical activities between neurons beyond 
observation of only the underlying structural networks. 
This presentation will demonstrate the design of the 
Microconnectome, and will discuss how we can 
effectively connect findings in Microconnectome with 
other findings in Meso- or Macro-scopic Connectomics 
[2, 3]. 

2	   Methods 

2-1.	   Experiment

All in vitro data was acquired according to guidelines
form the National Institutes of Health, and all animals 
were prepared after approval by the Animal Care and 

Use Committee in Indiana University and University of 
California, Santa Cruz. Cultured slices were selected 
from somatosensory cortex of P6 to P7 black mice as 
5mm3 sections, and slices into 400µm thickness, and the 
neuronal spikes were recorded for ~1hour with a 512 ch. 
Multi-electrode array system, and the effective 
connectivity was analyzed after performing a spike 
sorting. The performance of the spike-sorting algorithm 
was evaluated in retina because we can estimate the 
positions of neurons and stimulated timing by knowing 
the positions and timings of photo-stimulations on 
retina [4].   
    The in vivo data was also used to characterize  the 
topology which was used to compare with in vitro data 
later. The experimental procedure was approved by the 
University of California, Los Angeles, Chancellor’s 
Animal Research Committess. All surgeries were 
performed under anesthetized conditions with 
isoflurane in a stereotaxic apparatus  constraint to the  
animal’s head. The microprobes held five prongs 
spacing 0.3-0.4 mm, and, on each prong contained ~51 
recording sites, and was placed at orbitofrontal cortex. 
After extracting the resting period from sorted spikes, 
we performed the subsequent effective network 
analyses. Refer [5,6] to understand more details in 
experimental procedures and preprocessing of recorded 
spikes. 

2-2.	   Data analysis

This subsection focuses on effective network analyses.
The essential issue in effective network analysis is 
Causality. Causality is the relationships from cause to 
effect. However, because in biological systems, many 
components co-exist, the causal interactions are 
intertwined. Therefore, once we  have obtained  the 
complex networks,  then we need to intertwine them.       
   To reconstruct the causal interaction among neurons, 
we needed to select some quantities, which measure the 
intensity of each connection. In order to select the best 
quantity, we evaluated the prediction performance of 
structural networks based on effective networks 
reconstructed from recorded data in sufficiently long 
time length (~1hours). When observing long-term 
activities of neurons, electrical currents naturally run 
through underling structural networks in high 
percentages. Therefore, if we were succeeded to select 
the most optimal measure, it may become closer to the 
ground truth topology of the structural networks after 
long-term observation [5]. This property provides a 
critical criterion to select and to design physiologically 
reliable computational measures.  
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    In mathematical model studies, Garofalo et al. and 
our collaboration team had predicted that Transfer 
Entropy (TE) has the best detectability of causal 
interaction relating to the structural network among 
Cross-Correlation (CC) and several information 
measures [7, 8].  
    With preparing a new evaluation scheme purely from 
experimental data [5], we selected time-delayed TE and 
relating optimal parameters. The selection naturally 
satisfied good similarities of topologies between 
effective networks and structural networks. 
  The equation (1) expresses the definition of TE [9]: 

    (1) 
  and  indicate the states of neuron I or neuron J at 
time t. When the neuron I or J fires, the value is 1, and 
otherwise the value is 0. This equation measures the 
incorrectness of the assumption that the status of 
neuron J at time t has no influence on the transition of 
status of neuron I from past two time points t and t-d to 
time t+1. Beyond just calculating TE, we prepared the 
optimal filter to select sharp and strong peaks on the 
time axis. The filtering process avoided that we select 
confounding connections caused by common drivers or 
indirect connections. The preprocessing is critically 
important to extract truly physiologically reliable 
effective connections (Refer to the supplemental 
material in Reference [5] about the detailed analysis 
procedure.). 
     Now, we could reconstruct causal information flow 
in the neuronal system. From the distribution of the 
information flows, we could ask questions about basic 
statistical properties, such as if they hold long-tails or 
not, and if they distribute log-normally or normally.  
    These questions are important to characterize designs 
of neuronal network. However, simple forms of 
distributions are not sufficient to understand detailed 
designs of the information processing in a group of 
neurons as one unified and organized system. In order 
to achieve such understanding, we need to untangle the 
intertwined complex information flows. Graph theory 
provides a very useful and effective basis to tackle the 
complex non-uniformity [10]. We call this approach 
Microconnectome. This report and presentation will 
demonstrate several network measures, such as Hub, 
Cluster, Community, Rich-Club, Diversity, and 
Dynamic Importance. Hubs were defined as well-
connected and highly central nodes. Clusters are group 
of several nodes holding specific connectivity patterns 
in the groups. Community is a group of many nodes 
having more  connectivity density within same groups 
than between different groups. 

3	   Results 

3-1.	   Information flows 

   The histogram of intensities of information flow was 
log-normally distributed [fig.1-(a)]. At same time, if we 
observe the binary connections while ignoring the 

weights or strengths of connections, we can observe the 
degree-histograms, and also could find out that the 
degree-histogram also decayed exponentially. 
Furthermore, from the accumulated functions produced 
by accumulating the weights from stronger ones to 
weaker ones from the original lognormal distribution, 
we could estimate only 20% of the neurons store 70% 
of the information in the network organization [fig.1-
(b)]. These findings are consistent with properties of 
synaptic connections (structural connections), and these 
results mean that the distribution also held a long-tailed 
network, so the distributions of the systems are very 
non-equal [11,12]. 
 

          
Figure 1. The normalized histogram of intensities of 
information flow (IT) quantified by Transfer 
Entropy (TE). (a) Log-normal form of the histogram. (b) 
The accumulated value of intensities of the information flow. 
They are re-plotted from the reference [5] and [6] 

3-2.	   Microconnectome 

   As mentioned in the previous section, the effective 
networks of neurons showed a long-tailed distribution. 
Therefore, we could say that the network organization 
includes some special neurons which are connecting 
with more other neurons, Hubs [Fig.2].  
 

  
Figure 2. A spatial map of effective networks of neurons. 
Yellow circles show hubs in the microconnectome. This 
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figure was re-plotted from the reference [5] (you can see 
stained images at the front page of Indiana University, 
Network Science Institute: http://iuni.iu.edu/). 
 
   From further analyses of the multi-scale organization, 
we observed groups of 5-10 neurons and of 50-100 
neurons. In our data, these groups nicely corresponded 
with Clusters and Communities in terms of Graph 
Theory, and we checked their fragility based on 
dependency on hubs. From the results, we could find, 
although clusters seem to be supported by only 1% hubs, 
communities are supported by ~7% hubs. Therefore, we 
could find the two different kind non-uniformities, 
Clusters and Communities, should be different 
architectures, and can say that the hubs were 
surrounded by hierarchical or multi-scale organizations 
(Refer [5] in detail).  
   Besides, the following studies showed an important 
role of non-hub neurons, which receiving inputs from 
more than one of the out-degree hubs. Such non-hub 
neurons could gain information when combining the 
receiving information [13]. Furthermore, we could find 
hubs produced a Rich Club (RC) organization by 
directly connecting to each other, and such hubs 
participating in RC organization also has specific roles, 
for example, highly active, and shows high Dynamic 
Importance in the system etc. [6]. 

4	   Conclusions 

 The non-randomness of information flow up to 700 
neurons showed a complex but highly organized design 
holding hierarchical groupings, and specific 
connectivity patterns for gaining information and for 
efficient propagation of information among many 
segmented groups of the neurons. The non-randomness 
seems to reflect the mechanism for efficient segregation, 
process, and integration of information under realistic 
spatial constraints. 
    In the future studies, with extending the past findings, 
much progress can be made, not only for deeper 
understanding of the Microconnectome but also for 
producing connections of Microconnectome with Meso-
/Macro-scale networks [3], for evaluations in various 
species and various disease states are expected 
outcomes.   
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Abstract 

Recognition of facial expression is an important 
ability in human life, and it is related with emotion 
closely. In this article, we performed the psycho-
physical experiments for the purpose of clarifying 
the process of facial expression recognition by 
analyzing event-related potentials (ERP). We 
examined the difference of ERP between smile and 
anger faces, and classified the results of smiling 
faces with the mouth opened or closed. From a 
viewpoint of the late positive ERP components, 
experimental results suggest that (i) an anger face 
is handled than smile earlier, (ii) the smile with the 
mouth closed is processed similar to an anger face, 
in comparison with a grinning face, and (iii) P500 
response is related to the final categorization of 
emotions. Moreover, differences of ERP in the 
prefrontal cortex were obtained between partici-
pants, in which it is argued by the difference in 
scheme that they took for expression discrimination. 
Based on the hypotheses, we proposed an informa-
tion processing model to recognize smiling and 
anger faces. 
 

Keywords Event-related potential (ERP), Facial 
expression recognition, Emotion, Psychophysical experi-
ment, Information processing model 

1 Introduction 

In the human communication, facial expression 

becomes the important clue to guess the feelings of the 

partner. If the information processing about emotion 

becomes clear, it is expected to help the development of 

technologies for smooth communication, such as the 

robot which can understand human feelings better.  

Event-related potentials (ERP) is one of the useful 

measures to study the mechanism of information 

processing in the human brain, and several studies 

detected the components of ERP specific for face recog-

nition[1]. Since ERP is superior in temporal resolution, 

it is thought that applying it is suitable to analyze the 

information processing of facial expression.  

In this article, we perform psychophysical experi-

ments for the purpose of clarifying the process of the 

facial expression recognition. By analyzing measured 

ERP, we identify the characteristics of electric potentials 

related to the facial information processing.  

 

2 Psychophysical Experiment 

Stimulus: We used 10 Japanese female portraits in 

JAFFE database[2]. Based on the attached evaluations, 

10 images were chosen for each expression, e.g., smiling 

(happy), anger (angry), sad, and surprised faces. The 

stimuli were displayed in random order, at the area of an 

angular size 7.9 x 8.8 degrees in the LCD monitor 

(Samsung SyncMaster 2233RZ). PST E-Prime 2.0, 

which is a suite of applications for psychological 

experiments, was used for control of the stimulus 

presentation. 

Procedure: The experiment was conducted in a 

darkroom. The participant attached the electro-

encephalograph Emotiv EPOC during the experiment. 

 We instructed to the participants that they replied by 

pushing the button of PST Serial Response Box whether 

a displayed face image was an appointed expression, 

happy or angry. Only in the case of the appointed 

expression, the participants were directed to react. 

After showing a fixation point during 500 milli-

seconds, a face stimulus was displayed in 100 milli-

seconds. Then a random-dot image was presented for 

masking. The screen which forces a participant to answer 

was displayed for up to 2,000 milliseconds. This trial was 

repeated 320 times (40 stimuli presentation a set). 

Between the sets when an intermission screen was 

displayed, the participants could take a rest in the 

darkroom. 

Participant: 8 males and 3 females (for happy 

condition, 6 males and 2 females for angry condition) 

from 20 to 22 years old with (corrected) normal vision 

were participated as volunteers. 

3 Results 

The average rate of incorrect answers was 7.5%. The 

analysis was carried out along the answers of the 

participants, not expressions connected with face images. 

We employed EEGLAB[3], which is a MATLAB tool-

box for processing EEG. 

3.1 Comparison between smiling and 

anger faces 

Figure 1 and 2 show the event-related potential (ERP) 

of the right hemisphere for happy and angry conditions, 

which is obtained by the average of 11 participants (for 

happy condition, 8 participants for angry condition). The 

averaged ERP are derived from the trials when the 

participants pushed the button.  
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Figure 1: ERP for happy condition. 

 

Figure 2: ERP for angry condition.  
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P300 are observed with the electrodes at middle 

temporal gyrus for both happy and angry conditions. It is 

thought that the attention of the participants is surely 

turned to the face images, because P300 is an endog-

enous potential to reflect processes involved in stimulus 

discrimination. 

In the angry condition, the individual differences are 

occurred for the latency of P300. Since each participant’s 

latency of P300 is about 200 milliseconds, 400 

milliseconds, or nothing, the averaged ERP include two 

positive components dispersively. As an overall ten-

dency, the positive components are distinctly visible in 

the ERP in the right hemisphere, but not clearly in the 

left because of the differences between the participants. 

Although the P500 component is commonly 

appeared for most participants, the latency or existence 

of N400 is highly individual. Compared between Figure 

1 and Figure 2, the latency of P500 for the angry 

condition is earlier, in which it is about 450 milliseconds 

in Figure 2. The difference suggests that processing of 

anger faces in brain is performed earlier than smiling.  

Focusing the ERP components observed with the 

electrodes at the occipital lobes for both happy and angry 

conditions, participants were divided into two types: 

N400 clearly appeared, or fibrillation of potentials were 

recorded.  Basically, individual differences emerged 

more greatly than the expression differences. That 

tendency might be dispersed by the scheme that 

participants took for the tasks.  

3.2 Comparison between smiling with the 

mouth closed and grinning faces 

A human face may be an expression with different 

characteristics even if it expresses the same emotion. We 

divided 10 images of the happy condition into 2 groups; 

4 smiling faces with the mouth closed (smile) and 6 

grinning faces (laugh). Figure 3 shows ERP for both 

stimuli which is obtained by the average of 11 

participants. The averaged ERP are derived from the 

trials when the participants pushed the button. 

Although presence or latency of P300 and N400 is 

inconsistent by the participants, the late positive ERP 

components P500 is commonly observed in the frontal 

lobes. The amplitude for the smile stimuli appears more 

definitely and is larger than the laugh stimuli. The 

latency of P500 for smile stimuli is later than angry 

condition. For the participants who P300 and N400 

appear for both stimuli, the latency of the angry 

condition tends to be the shortest, and the laugh stimuli 

is the second in order. As a result of individual 

participant, the electric potential of the late ERP shows a 

tendency to raise. The positive component VPP around 

170 milliseconds is recorded as for almost all participants 

for the smile stimuli, but not for the laugh stimuli. 

In the temporal lobes, P300 and N400 are observed 

for both smile and laugh stimuli. The difference of the 

latency is not consistent, but the amplitude of P500 

component for the smile stimuli is larger than the laugh 

stimuli. 

 
Figure 3: Difference of ERP between smiling (smile) 

and grinning (laugh) faces for the happy condition. 
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In the occipital lobe, multiple positive components 

arise from 200 to 400 milliseconds. Similar to the other 

electrodes, the amplitude of P500 for the smile stimuli is 

larger as for several participants. 

4 Discussions 

Based on the features of ERP components, we 

propose an information processing model to recognize 

smiling and anger faces, as shown in Figure 4.  

When an anger face was displayed, unconscious 

processing to detect the menace might occur, mainly in 

the amygdala. However, since the activation of the 

amygdala was not observed under our experiment that 

imposed the emotional category discrimination for the 

expression, it is suggested that activation of the right 

lateral prefrontal cortex affects inhibitory action of the 

amygdala[4]. Results of independent component analy-

sis, in which the estimated sources would be around AF3 

and AF4, argue that P300 recorded in the electrodes of 

frontal lobe may be the component related to the 

inhibition. 

We consider that it is branching after the recognition 

of a target face, in which it seems to be represented by 

P300 components at the temporal lobes and the source 

may be the superior temporal sulcus, by the difference in 

scheme which the participants took. The process from 

the early perception represented by VPP and N170 

components to the face recognition in the superior 

temporal sulcus corresponds to the Core system[5] by 

Haxby, et al. We hypothesize that the features of ERP 

are caused by the difference in scheme in the following 

Extended system[5]. 

If a participant takes a simple perceptual scheme for 

a clear expression of the emotional category such as 

grinning, the prefrontal cortex may not be activated so 

much but the recognition process in the temporal and 

occipital lobes may be carried out based on the rough 

morphological characteristics of a face. In the case where 

the complex scheme is taken for the expression stimulus 

hard to discriminate its emotion perceptually, it is 

supposed that the wide area of subcortical system 

cooperates on the process. Although we could not 

estimate the sources of N400 or P500 which arise from 

the latter process, such components were observed at the 

broad field, similar to the process when an emotionless 

or an ambiguous face is displayed.  

Patient-based evidence[6] suggests that the expres-

sion processing is atypical and independent to the facial 

identity. We suppose that P500 components observed at 

most electrodes involve final discrimination process of 

expressions. Since the latency of P300 or N400 was 

highly individual, however, further experiments would 

be necessary. 
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Abstract 

The objective of this research was to assess 
brain function by electroencephalography (EEG) 
and autonomic nervous function by 
photoplethysmography (PS) during emotional 
stimuli. The psychological status of healthy young 
adults was also evaluated using several 
questionnaires. EEG and PS were measured 
during emotional audio-visual stimuli. We 
abstracted how the neurophysiological responses 
under the emotional situations varied according to 
the subjects’ mental stability. The results show that 
an EEG activity on the temporal area and a 
sympathetic nervous response were high when the 
subject’s mental status was unstable. These 
results show that brain information processing and 
autonomic nervous system for an emotional 
situation of the mentally unstable people are 
different from those of the mentally stable people. 

Keywords Electroencephalography, Emotion, 
Photoplethysmography

1 Introduction 

The number of young adults who easily go ballistic 
over the slightest things has increased [1]. Mental and 
behavioral disturbances in young adults who have been 
labeled social misfits in their youth is a serious social 
issue. These phenomena are related to the growing 
number of people who suffer from mental disorder.  

Although morphological examinations such as 
magnetic resonance imaging (MRI) can detect steady-
going changes in the brain, functional examinations 
such as electroencephalography (EEG) can find brain 
changes in the earliest stage of progress to diseases [2]. 

Photoplethysmography (PS), which detects changes 
in the autonomic nervous system, is useful in evaluating 
psychosomatic states [3]. The advantages of PS are that 
it is a sensitive measure of reactions to stressful stimuli 
and that habituation of stimuli tends not to occur [4]. 

The aim of this research was to evaluate the brain 
function and autonomic nervous responses to emotional 
stimuli. Moreover, these reactions were assessed in 
groups of subjects with different mental stabilities. 

2 Methods 

  The subjects were thirty healthy young adults, and 
EEG and PS of the subjects were measured under and 
after emotional audio-visual stimuli. Emotional stimuli 
consisted of relaxed stimuli, pleasant stimuli, and 
unpleasant stimuli. EEG was analyzed using wavelet-
crosscorrelation analysis to obtain the wavelet-
crosscorrelation coefficient (WCC) [5], and 
independent component analysis (ICA) to obtain the 
occurrence rate of the independent component [2]. PS 
was analyzed with wave form analysis [6]. The low 
amplitude of PS means that the activity of sympathetic 
nerve of the autonomic nervous system is high. 
  Personality Inventory (PI) and Cornell Medical Index 
(CMI) were used as the questionnaires to evaluate
mental and physical aspects of the subjects. The 
subjects were categorized into stable and unstable 
mentality groups according to the scores of the 
questionnaires. We compared the features of EEG and 
PS changes by emotional stimuli between the subjects 
with stable mentality and unstable mentality. 

3 Results 

The results from WCC indicated that EEG changes of 
the subjects with stable mentality were different 
between the pleasant stimuli and the unpleasant stimuli. 

The results from ICA showed that the high EEG 
activity on the temporal area under the unpleasant 
stimuli was provoked if the mentality of the subject was 
unstable, and the high EEG activity on the occipital area 
under the pleasant stimuli was provoked if the mentality 
of the subject was stable. 

The results also showed the amplitude of PS under 
the unpleasant stimuli was low, and the amplitude under 
the pleasant stimuli was high. The amplitudes after the 
stimuli were higher than the amplitudes during the 
stimuli. All the amplitudes of the subjects with unstable 
mentality were lower than those with stable mentality. 

4 Discussion 

We found that the brain function and the autonomic 
nervous system of people with unstable mentality 
differently responded under the emotional stimuli from 
those with stable mentality. We could comprehend the 
relationship between the brain function and the 
autonomic nerve to reveal the whole mental and 
psychosomatic symptoms of the psychiatric patients. 
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Abstract 

The electroencephalography (EEG) can be used 
for the diagnosis of mental disorders. Abnormal 
EEG sometimes appears in patients with mental 
disorders. We quantitatively investigated the 
abnormal EEG. The subjects were 8 patients 
suffering from mental illness. We analyzed EEG 
using wavelet-crosscorrelation. We compared 3 
epochs: before the appearance of the abnormal 
EEG (2 segments), during the abnormal EEG (1 
segment), and after the abnormal EEG (2 
segments). We calculated wavelet-crosscorrelation 
coefficients (WCC) for frequencies in the theta 
band for each segments in all the patients. We 
found that the values of WCC were higher during 
abnormal EEG than the values in the other epochs. 
This result on the theta activity suggests that there 
is not only functional minute disorders but 
abnormalities in connectivity in the brain of 
patients with mental illness. 

Keywords Coherence, Electroencephalography, 

Mental disorde, Theta activity, Wavelet-crosscorrelation

1 Introduction 

In recent years, the number of people with mental 

disorders consulting a medical doctor has increased. 

Mental illnesses have become the predominant chronic 

diseases of the 21st century society. In September 2009, 

the Ministry of Health, Labor and Welfare in Japan 

reported that about 25 % people suffered from a mental 

disorder [1]. The cause of the mental disease varies, but 

there is not a clear answer yet. Epilepsy and brain 

function of disorders are also considered to be causing 

mental disorders. 

The electroencephalography (EEG) can be used for 

the diagnosis of diseases. In order to judge EEGs, it is 

important to determine what is normal and what is 

abnormal. If theta waves are clearly visible in the entire 

region of the the brain during a state of rest, it can be 

said that the EEG is abnormal [2].  

An abnormal EEG sometimes appears in some 

patients with mental disorders. Although research 

related to abnormal EEG has already been conducted, 

the correlation between the sites during an abnormal 

EEG has not yet been elucidated. Therefore, a 

quantitative evaluation of the brain function related to 

abnormal EEG is necessary. 

In this paper, we analyzed abnormal EEGs appearing 

in patients with mental disorders using wavelet-

crosscorrelation analysis, and quantitatively 

investigated the abnormal EEGs. 

2 Methods 

We recorded electroencephalography (EEG) from 8 

patients. The patients have a state of depression, and 

they were diagnosed to have mental disorders which 

could be partially caused by abnormal EEG. The WEG 

was measured during a state of relaxation while the 

eyes were closed. The study protocol was approved by 

the Ethics Committee of the Matsumoto clinic. 
The EEGs were recorded 12 channels using the 

international 10–20 electrode positions with 500 

samples per second (NIHON KODEN, JAPAN). Low-

pass filter was set to 60 Hz and high-pass to 0.5 Hz. 

We assessed 3 epochs: before the appearance of the 

abnormal EEG, during the abnormal EEG, and after the 

abnormal EEG. We evaluated all pairs within the group 

of 12 channels using wavelet-crosscorrelation analysis 

to get wavelet-crosscorrelation coefficients (WCC) [3].  

Wavelet-crosscorrelation analysis is a method that 

can decompose signals that have rapidly changing 

components. This analysis can reveal the characteristics 

of transient changes, various frequency components, 

and coherence between sites. When we represent the 

wavelet transform of the two signals by 𝑊𝑓𝑥(𝑏, 𝑎) and

𝑊𝑓y(𝑏, 𝑎) , the wavelet cross-correlation function

 𝑊𝐶𝑥𝑦(𝑎, 𝜏) is defined by Equation 1.

W𝐶𝑥,𝑦(𝑎, 𝜏) = lim
𝑇→∞

1

2𝑇
∫ 𝑊𝑓𝑥(𝑏, 𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑊𝑓𝑦(𝑏 + 𝜏)

𝑇

−𝑇
𝑑𝑏,  (1) 

𝜏 indicates a time delay of the wavelet coefficients in 

the wavelet space, and 𝑊𝑓𝑥(𝑏, 𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  represents a

complex conjugate. The WCC 𝑊𝑅𝑥𝑦(𝑎, 𝜏)  from the

real part of the wavelet-crosscorrelation function 

𝑅𝑊𝐶𝑥,𝑦(𝑎, 𝜏) is defined by Equation 2.

W𝑅𝑥,𝑦(𝑎, 𝜏) =
𝑅𝑊𝐶𝑥,𝑦（𝑎,𝜏）

√𝑅𝑊𝐶𝑥(𝑎,0)𝑅𝑊𝐶𝑦(𝑎,0)
,  (2) 

By calculating the WCC, 𝑊𝑅𝑥𝑦(𝑎, 𝜏) between any of

the electrodes, relevant to the strength of the coherence 

for each frequency band between the sites in the brain 

can be abstracted [4]. The closer WCC is to 1, the 

higher and more significant the coherence is; the closer 

WCC is to 0, the lower and less significant the 

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

66



coherence is.  
In this research, the window length was set at 2 

seconds, the number of channel pairs was 66, and a 

threshold of 0.3 was adopted in order to enable the 

coherence of WCC values. In other words, WCC values 

below 0.3 were left out of the analysis because it is less 

meaningful. 

We calculate WCC for 2 seconds in the 4–7 Hz 

frequency range (theta band) and analyzed 5 segments 

in 3 epochs (Fig. 1). The 3 epochs were “BEFORE” (for 

4 seconds before the abnormal EEG appears: A, B), 

“ABN” (for 2 seconds during the appearance of the 

abnormal EEG: C) and “AFTER” (for 4 seconds after 

the disappearance of the abnormal EEG: D, E). 

We compared WCC in the 5 segments using one-way 

analysis of variance (one-way ANOVA) with 

Bonferroni corrections, since all the date were 

independent. 

 

 
 

Figure 1: An example of an abnormal EEG. We 

divided EEG into 2 seconds to calculate WCC and 

analyzed 5 segments in 3 epochs. 

3 Results 

 Table 1 shows the 8 patients’ information (age range: 

33–61 years; 2 males, 6 females). They were medicated 

with anti-epileptic and psychoactive drugs. 

 

Table 1: Patient profile. (mean age = 46.88 years, SD = 

9.78 years) F = Female, M = Male. 

 

Figure 2 shows a typical example of frequency–
segments of the wavelet scalogram in the right central 

channel (C4). In the map, red color shows a high 

spectrum value and blue color shows a low spectrum 

value. The spectrum value of ABN were higher than the 

values of other epochs. The dominant frequency is 

about 5–7 Hz. 

 

 
 

Figure 2: The frequency segments of the wavelet 

scalogram in the right central channel. The abscissa 

show the segments and the ordinates show the 

frequency. 

 

Figure 3 shows a typical example of mean WCC 

values between the 12-channel sets in 5 Hz in 5 

segments (Patient #2). In C (during the appearance of 

the abnormal EEG segment), the high coherence values 

are shown not only in the intrahemispheric pairs but in 

the interhemispheric pairs. 

 

 
 

Figure 3: Representative maps showing WCC values 

between all channel sets for 5 Hz in patient #2. The 

WCC value is portrayed by the thickness: 0.90 ≤ WCC 

< 0.93, thin; 0.93 ≤ WCC < 0.96, medium; 0.96 ≤ WCC 

< 1.00, thick. 

 

Figure 4 shows mean WCC values of all channel 

pairs in the theta band in all the segments of all the 

patients. The WCC values of C were significantly larger 

than the values of A, B, D, and E. 

 

 

Patient 

number  

Age 

[years 

old] 

sex disorder Number 

of 

segments 

#1  61 F Epilepsy 25 

#2 52 F Schizophrenia 25 

#3 57 F Depression 20 

#4 45 M Depression 15 

#5 35 M Neurosis 15 

#6 39 F Depression 25 

#7 53 F Depression 10 

#8 33 F Schizophrenia 10 
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Figure 4: The mean WCC values in 3 epochs. 

Differences among the 5 segments were assessed by the 

one-way ANOVA and Bonferroni corrections: N = 66, 

*** P < 0.001. 

4 Discussion 

We found that the values of WCC were higher during 

the abnormal EEG than the other epochs. The theta 

wave activity of about 5–7 Hz has been reported to 

show a very small disorder in brain function [2]. The 

coherence between sites reflects the interaction of 

neural cellular population and shows the connections 

between the sites of the brain [5]. These results on the 

theta activity suggest that there is not only functional 

minute disorders but abnormalities in connectivity in 

the brain of patients with mental illness. In the next step, 

we are planning to analyze the EEG from healthy 

subjects to abstract the feature of the EEG from the 

patients. 

 

Acknowledgements 

This work is partially supported by JSPS KAKENHI 

Grant Number JP (16K01367). 

References 

[1] Ministry of Health, Labor and Welfare. Report on Mental 

Health and Medical Welfare Measures. 

http://www.mhlw.go.jp/shingi/2009/09/dl/s0924-2a.pdf, 2009. 

[2] T. Okuma. Clinical Electroencephalography. Igaku–
Shoin Ltd, 1999. 

[3] Y. Mizuno-Matsumoto, G.K. Motamedi, W.R.S. Webber, 

R.P. Lesser. Wavelet-crosscorrelation analysis can help 

predict whether bursts of pulse stimulation will terminate 

afterdischarges. Clinical Neurophysiology, 113(1):33-42, 

2002. 

[4] Y. Mizuno-Matsumoto, S. Ukai, R. Ishii, S. Date, T. 

Kaishima, K. Shinosaki, S. Shimojo, M. Takeda, S. Tamura, T. 

Inouye. Wavelet-crosscorrelation analysis: Non-Stationary 

Analysis of Neurophysiological Signals. Brain Topography, 

17(4):237-52, 2005. 

[5] S. Weiss, P. Rappelsberger. Long-range EEG 

synchronization during word encoding correlates with 

successful memory performance. Cognitive brain research, 6; 

9(3):299-312, 2000. 

 

Address for correspondence:  

Kozue Yamaguchi  
Graduate School of Applied Informatics, University of Hyogo 
7-1-28, Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo  
650-0047, Japan 
kozue.y1@gmail.com 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

68



Features of diffuse alpha pattern in electroencephalography 

Steven M. A. Carpels1, Kozue Yamaguchi1, Yuko Mizuno-Matsumoto1, 

1Graduate School of Applied Informatics, University of Hyogo, Japan; 

Abstract 

On electroencephalography (EEG), alpha waves 
are usually visible in the occipital region of the 
brain during the closing of the eyes. In some 
individuals suffering from brain illnesses, alpha 
waves can be seen in many regions of the brain 
and this is considered to be an abnormal EEG 
(known as diffuse alpha pattern). We quantitatively 
investigated normal and abnormal EEGs. The 
subjects were 5 healthy individuals and 4 patients 
suffering from brain diseases. We used wavelet-
crosscorrelation analysis to compare diffuse alpha 
patterns with normal EEGs. We calculated 
wavelet-crosscorrelation  coefficients (WCC) for 
frequencies in the alpha band for all epochs in 
each of the patients and healthy persons. We 
found that the values of WCC were higher in the 
abnormal EEG with the diffuse alpha pattern than 
in the normal EEG.  

Keywords Alpha band, Diffuse alpha pattern, Electro-

encephalography, Wavelet-crosscorrelation analysis

1 Introduction 

The clinical application of electroencephalography 

(EEG) is being carried out in many hospitals and is 

being used for the assessment of neurophysiological 

pathologies [1]. For the clinical study of EEG, 

frequency analysis is one of the most important 

methodologies [2].  

Alpha waves have a frequency ranging from 8 to 

13.9 Hz and can be seen the most clearly in healthy 

individuals in the occipital region of the brain during 

the closing of the eyes. There are cases where alpha 

waves do not only appear in the occipital region but can 

also continuously appear in all regions in the cranium. 

This phenomenon is called “diffuse alpha pattern”, and 

is regarded as a type of abnormal EEG [1].  

This research aims to compare the EEG of patients 

suffering from brain diseases with the EEG of healthy 

individuals, and, using wavelet-crosscorrelation 

analysis, to calculate wavelet-crosscorrelation 

coefficients (WCC). We compared the appearance of 

the diffuse alpha pattern with the appearance of the 

normal alpha pattern and investigated whether or not 

the coherence between the different parts inside the 

brain changes according to these 2 patterns.  

By calculating WCC, we can obtain coherence 

values which provide information about the correlation 

between the sites of the brain, as well as the patterns in 

connectivity inside the brain. We can hypothesize that 

not only the WCC values, but also the connectivity 

pattern between the parts in the brain will differ 

between healthy individuals and mental disorder 

patients.  

2 Methods 

We recorded electroencephalography (EEG) from 5 

healthy individuals and 7 patients. The patients were 

diagnosed with mental disorders, and abnormalities can 

be observed in the EEG. The EEG was measured during 

a state of relaxation while the eyes were closed. There 

was no sound at the time of recording. To obtain the 

EEG recordings, the electrodes were placed according 

to the International 10–20 electrode positions. The 

sampling frequency was 500 Hz. The study protocol 

was approved by the Ethics Committee of the 

Matsumoto Clinic.  

The analyzing method used was wavelet-

crosscorrelation analysis [3]. It is a combination of 

wavelet analysis and crosscorrelation analysis. By using 

wavelet analysis, a wavelet spectrum can be obtained 

that displays the activity of the various frequency bands. 

Crosscorrelation analysis enables the degree of 

waveform similarity between 2 different time series to 

be determined. Wavelet-crosscorrelation analysis is a 

new method that, while storing time information, makes 

it possible to investigate the coherence between the 

parts inside the brain. As opposed to crosscorrelation 

analysis, it can also be used for non-stationary data [4]. 

It displays that the closer the value of the obtained 

wavelet-crosscorrelation coefficients (WCC or in other 

words the coherence) is to 1, the more the waves are the 

same in terms of shape and nature (a value of 1 means 

exactly the same). The closer the value of WCC is to 0, 

the more different the waves are in shape and nature (0 

means the waves are completely different). The EEGs 

recorded 19 electrode channels. Therefore 171 channel 

pair combinations are possible and each of these pair 

combinations has a coherence (WCC) value.  

We used the software Vital Tracer, developed by 

Kissei Comtec Company, to abstract the EEG. There 

were 1000 analysis points, and the analyzing time was 2 

seconds. The Frequency bandwidth is between 8 and 

13.9 Hz (alpha bandwidth). The programming software 

MATLAB R2015b was used to obtain WCC values. We 

used SPSS Statistics 18 to do the statistical analysis. 

The method for statistical analysis was the Student’s T-
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test for comparing 2 averages, and analysis of variance 

(ANOVA) with Bonferroni corrections for comparing 

more than 2 averages.  

3 Results 

 Table 1 shows the healthy subjects’ information 

(mean age = 24.00 ± 2.00 years). Table 2 shows the 

patients’ information (mean age = 54.71 ± 8.33 years). 

The patients were medicated with psychoactive drugs.  

 

Table 1: Healthy subject profile.  

 

 

Table 2: Patient profile;  F = Female, M = Male.  

 

The obtained wavelet spectra can be seen in Figs. 1 

and 2. The abscissa show the time and the ordinates 

show the frequency. In the map, red color signifies a 

high spectrum value and purple color signifies a low 

spectrum value. In the healthy individuals, much less 

alpha activity is visible in C4 (Fig. 1). More alpha wave 

activity is visible in O2 during eyes closed, which is the 

normal state.  

Figure 1: Wavelet spectra of the normal alpha pattern.  

 

 

Figure 2 shows that both the C4 and O2 electrodes 

of the patients have more alpha wave activity compared 

to the healthy persons.  

 

Figure 2: Wavelet spectra of the diffuse alpha pattern.  

 

 

Figure 3 shows the WCC values between all 

electrodes on a map using Tcl/TK according to the 

International 10–20 electrode positions (Fig. 3). In an 

individual who has normal alpha wave activity, the 

WCC values are less high. We can observe high 

coherence values in the post-temporal and occipital 

areas (Fig. 3A). In the brain of a patient, high WCC 

values can be observed between all electrodes, 

especially in the frontal area (Fig. 3B).  

 

 

 

Figure 3: Display of WCC in a map using Tcl/TK. The 

left figure shows the WCC values between electrodes at 

a frequency of 11.1 Hz, the right figure shows WCC at 

a frequency of 8.48 Hz. The colors represent thresholds 

for WCC values. For the left figure blue represents 0.8

≦WCC<0.85, green 0.85≦WCC<0.9, and red 0.9≦

WCC≦1. For the right figure blue represents 0.9≦

WCC<0.94, green 0.94≦WCC<0.97, and red 0.9≦

WCC≦1.  

 

 

Figure 4 shows the comparison of the average of the 

171 WCC values in each epoch of all 7 patients with the 

average of the WCC values in each epoch of all 5 

healthy persons using a Student’s T–test. A 

significantly higher average value of coherence between 

all electrodes can be observed in the patients compared 

to the healthy individuals (Fig. 4). 

 

 

 

 

 

 

 

Patient 

number  

Age [years] Gender Number 

of epochs 

1  21 Female 5 

2 27 Female 5 

3 23 Male 5 

4 24 Female 5 

5 25 Male 5 

Patient 

number  

Age 

[years] 

Gen-

der 

Disorder Number 

of 

epochs 

1  58 F Schizophrenia 5 

2 40 F Low IQ and 

Depression 

5 

3 55 M Neurosis 5 

4 50 M Depression 5 

5 56 F Insomnia 5 

6 70 M Dementia 5 

7 54 M Depression 5 
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Figure 4: comparison of averages of WCC using a 

Student’s T–test (*** P<0.001). 

4 Discussion  

The connectivity inside the brain can be abstracted 

using WCC. The results confirm that the WCC values 

and the connectivity pattern between the sites in the 

brain of patients suffering from mental disorders differs 

from the brain of healthy individuals.  

It has already been reported that in healthy persons 

the alpha activity is at a higher frequency and patients 

have alpha activity at a lower frequency [1]. The 

obtained wavelet spectra confirm a lower frequency in 

the alpha band of patients. It is also known that the 

diffuse alpha pattern is visible in people with a small 

brain disorder and low brain function [1]. 

 Interpreting these results, we can consider that the 

diffuse alpha pattern not only reflects low brain 

function, but also that there is an abnormality in the 

connectivity of the sites in the brain. It could be the case 

that healthy people do not use a lot of neurons in an 

idling state. In this state, it could be sufficient to use 

only the neurons of the occipital area of the brain [5]. 

We can consider that patients or some elderly 

individuals, even in an idling state, might use the whole 

area of the brain, rather than a small area.  

In the future, we will investigate the EEGs of older 

healthy individuals and younger patients with mental 

disorders in order to be able to compare the normal and 

diffuse alpha patterns between subjects of the same age.  
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Abstract
EEG-based emotion recognition (EEG-ER),

which is one of the utilization of Brain Computer
Interaction (BCI) to recognize human emotions,
has recently drawn a great deal of attention. The
authors developed EEG-ER models using the deep
neural network (DNN) which can learn a superior
internal representation in order to make accuracy
higher than models using shallow classifiers. The
models were evaluated by having them to classify
and recognize EEG signals according to the emo-
tional states “positive” or “negative” which were
caused by watching music videos. One kind of
DNNs, convolutional neural network (CNN), was
employed as the model. Supervised pre-training
was also adapted to the CNN to increase the accu-
racy. The CNNs had greater accuracy using smaller
training data than conventional models even though
CNNs are not good at learning on small datasets.
The result implies CNNs can extract features from
raw EEG data as good as other modalities.

Keywords BCI, EEG, Emotion recognition, CNN,
Deep learning, Feature

1 Introduction
Due to extension of machines’ ability, people is just

beginning to have more opportunities to work with ma-
chines familiarly. In addition, there has been much in-
terest in studies of unconscious mental states which are
hard to verbalize recently. The affective models which
can link recorded data with mental states and recognize
emotions based on data should be useful in such studies.

Emotion recognition (ER) technique is indispensable
to realize these systems. Physiological signals, images
of expression, and speech signals are inputted into the
ER model and apposite emotional labels of the data are
outputted. Especially, when EEG signals are used as in-
put, ER technique is called EEG-based Emotion Recog-
nition (EEG-ER). In EEG-ER, the models have been con-
ventionally implemented using statistic values in time
or frequency domains for the features; Support Vector
Machines (SVMs), Decision Trees, Linear Discriminant
Analysis (LDA) are used for the classifiers. However,
these models using “shallow” classifiers demand that fea-
tures are distributed to be classified into correct classes as

easily as possible.
Deep Neural Networks (DNNs) have received con-

siderable attention in recent years because of their high
accuracies and versatility by learning excellent internal
representation based on raw data. The methods using
deep learning have broken records in various tasks and
data modalities. In EEG-ER, Deep Belief Networks
(DBNs)[1] and Stacked Autoencoders (SAEs)[2] both of
which perform unsupervised pre-training are used. These
studies indicate that DNNs perform more accurately than
conventional models. However, raw data of EEG record-
ings, in other words multichannel time sequential signals
are not used as DNNs’ input in these works to report on
the ability of feature extraction.

In this paper, we propose the models using CNNs,
which are not pre-trained in unsupervised way and have
been used as EEG-ER models in a few cases so far. The
CNN using multichannel time sequential signals gotten
from 16 electrodes as input data is able to more accu-
rately recognize emotions than conventional models are.
Moreover, the CNN added pre-training technique outper-
forms the basic CNN.

2 Method
We implemented EEG-ER models which estimate

classes of emotional states using EEG data as input. The
models consisting of feature extractors and shallow clas-
sifiers are also implemented for comparison. Hereafter
they are referred to as “shallow models”.

2.1 Emotion recognition models
2.1.1 CNN

CNNs are one kind of feedforward DNNs and mainly
used in image processing. Convolutional layers and pool-
ing layers which are special layers with local connec-
tions characterize CNNs’ architectures. Normally, con-
volutional and pooling layers are alternated several times,
then fully-connected layers are arranged.

In terms of the l-th convolutional layer, its input is a
3D array with K 2D feature maps of size W1 × W2.
Each component is denoted by zl−1

ijk (i = 0, · · · ,W1 −
1, j = 0, · · · ,W2 − 1, k = 0, · · · ,K − 1). A fil-
ter bank consists of M kinds of kernels and each com-
ponent is denoted by hpqkm(p = 0, · · · ,H1 − 1, q =
0, · · · , H2 − 1, k = 0, · · · ,K − 1,m = 0, · · · ,M − 1).
Each kernel as well as input has K channels, so the size
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is H1×H2×K. Parallel calculation with respect to each
kernel(m = 0, · · · ,M −1) is made to output uijm. Then
an activation function f(·) is applied to uijm to get the
output of the l-th convolutional layer zlijk. The opera-
tions as stated above are written as

uijm =
K−1∑
k=0

H1−1∑
p=0

H2−1∑
q=0

zl−1
i+p,j+q,khpqkm + bijm (1)

zlijm = f(uijm) (2)
where bijm is the bias and generally bijm = bm is used.
If input data are multichannel time sequential signals, un-
like images, we can consider W2 = H2 = 1.

There are some ways to pooling, especially max pool-
ing is the function which is often used and written as

uijk = max
(p,q)∈Pij

zpqk (3)

where Pij is the area applied to the function on the input
feature maps.

2.1.2 Features of shallow models
a) FD: It is known that EEG signals have the fractal
property[3], therefore the fractal dimensions of EEG sig-
nals are available to evaluate brain activities objectively.
Assuring the stationarity of signals by the short-time ob-
servation, secondary moment σ2(τ) of a time sequential
signal f(t) whose fractal dimension is D is written as

σ2(τ) =
⟨
|f(t+ τ)− f(t)|2

⟩
≈ |τ |2H . (4)

Hurst exponent H and the estimated value of fractal di-
mension D̂ are given by

H =
1

2

δ log σ2(τ)

δ log |τ |
(5)

D̂ = 2−H. (6)
We cut out a time sequential signal fk(t) (t =
0, · · · ,W − 1) from each EEG channel (k = 1, · · · ,K)
using rectangular window (its size and stride are denoted
by W and WS , respectively). Substituting fk(t) into Eq.
(4)–(6), we obtain D̂k. The K-dimensional vector con-
sisting of the same time D̂k is defined as the feature FD
of the time.
b) ES: The energy spectral densities (ESD) or the power
spectral densities (PSD) of EEG signals as well as the val-
ues transformed from them are often used as the features
of emotions or intentions of human in BCI (Brain Com-
puter Interaction). They have measurable results[1][2].
A time sequential signal which is cut out using rectan-
gular window (size W , stride WS) is denoted by f(t)
(t = 0, · · · ,W − 1). ESD is given as

ESD(ω) =
1

2π

∣∣∣∣∫ ∞

−∞
f(t)e−iωtdt

∣∣∣∣ (7)

We use ESD(ω) as explanatory variables composing the
feature vector ES. When frequency band fmin–fmax[Hz]
(0 ≤ fmin, fmax ≤ fS/2, fS denotes the sampling
rate) is assigned, an ES consists of ESD(ω) (ω =
fmin, · · · , fmax). For instance, the ES is a (ceil(W/2)×
K)-dimensional vector consisting of ESD(ω) when the
frequency band is assigned as 0–fS/2[Hz].

2.2 Experiment and evaluation method
2.2.1 Conditions of EEG data
a) Database: We got EEG data (fS = 512 [Hz]) to
train and test the models from DEAP dataset[4]. In this

database, each subject watched 40 one-minute highlight
music videos in randomized order and performed a self-
assessment of their levels of a certain kind of emotion at
the end of each video. EEG signals were recorded when
subjects were watching videos, and emotional informa-
tion includes the values of emotional levels 1–9. Here-
after we refer to the one-minute multichannel EEG sig-
nal which was recorded when a subject was watching a
video as “one epoch signal”. The dataset of each subject
consists of 40 pairs of an epoch signal and its emotional
levels.
b) Dataset: We used EEG signals which were gotten
from 16-channel electrodes (Fp1，Fp2，F3，F4，F7，F8，
C3，C4，T7，T8，P3，P4，P7，P8，O1，O2) and values
of valence levels in the analysis. The datasets of 10 sub-
jects (s01–10) were used for pre-training of CNNs, the
datasets of 3 subjects (s01–03) were used for evaluation
of the models. The basic idea of the classification task
set in this experiment is to recognize whether the emo-
tion of each subject is “positive” or “negative” from EEG
data. Eleven epochs were taken out in descending order
from the highest level of valence and 11 epoch signals
in ascending order from the lowest level of valence with
respect to each subject1. The dataset of one subject con-
sists of 22 epoch signals whose labels were “positive” or
“negative”.
c) Electrodes and channels: We prepare 2 ways of mak-
ing channels of data. One way is to set the number of
channels (= K) to the number of used electrodes (= 16)
in this study. The other way is to set K to 120 (= 16C2)
by making differential signals of combinations of 16 elec-
trodes.
d) Size of data: The purpose of the present work is to
construct EEG-ER models which can recognize human
emotions at high time resolution in order to follow the
change of his or her emotional state. When we cut out
signals and make the minimal amount of data by rectan-
gular window, therefore, its size and stride should be set
as small as possible. The size and the stride of the win-
dow are set W = 512 [point] (= 1 [sec]×fs[Hz]) and
WS = 64 [point] (= 0.125 [sec]×fs[Hz]), respectively.
The size of the minimal amount of data is denoted by
512 × 1 ×K according to Sec.2.1.1. The number of the
minimal amount of data in a dataset of a subject is equal
to 10,406 (= 22× {(60− 1)/0.125 + 1}).
e) Preprocesses of EEG signals: As the preprocess of
EEG analysis, the average of 5 [sec] potentials before
each epoch was subtracted from the epoch potentials. We
optimized the filter for preprocess based on the tendency
chart of feature appearance (Fig. 1) gotten in the anal-
ysis using a feature ES, a classifier random forest (RF),
and the univariate feature selection. Selected explanatory
variables are concentrated on the placement T7 and the
high frequency band about 50–175[Hz], so we employed
50–175 [Hz] bandpass filter when FDs or CNNs were
used for models. We confirmed that the filter is reason-

1Eleven is the maximum number which makes no duplication of
valence values between the classes even if 2 values taken from 2 classes
one by one were evaluated by different subjects.
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Figure 1: The tendency chart of feature appearance of
s01–s10 on electrode placements and energy spectra.

able because the accuracies on filtered data was equally
higher than the accuracies on not-filtered data.

2.2.2 Evaluation method
We took out epoch signals from each class one by

one and made 11 pairs randomly on each subject dataset.
Eleven-fold cross validation was performed on each sub-
ject dataset by using 10 pairs as training and validation
data and 1 pair as test data. The seed of random func-
tion employed to make random pairs was fixed so that
epoch signals of pairs were same at any time the cross
validation was performed. In terms of shallow models,
parameters were set in the ways mentioned in Sec.2.2.3
or optimized in experiments according to their accura-
cies. Therefore, we did not set validation data and used
10 pairs as test data. In terms of CNNs, there is no
guarantee that the larger the maximum number of train-
ing epochs2 (= Epoch) is, the higher the accuracies
of the CNN are. Because of this, the set of parame-
ters (h(epoch), b(epoch)) (epoch = 0, · · · , Epoch − 1)
needs to be determined by choosing the optimum number
of epoch as epochopt. Validation data were employed to
determine epochopt as the value whose accuracy on vali-
dation data is the highest in all training epochs. We used
2 pairs selected from 10 pairs randomly as validation data
and 8 pairs as training data. The amount of training data
used by CNNs is smaller than that of shallow models.

2.2.3 Conditions of models
a) CNN: In image processing, the method of pre-training
a CNN on other dataset in the supervised way and ini-
tializing its set of parameters (h, b) is often employed[5]
and works well. To apply this to our work, when train-
ing and test are performed on a dataset of one of ten
subjects(s01–10), the set of parameters (h, b) is initial-
ized by supervised pre-training using the other datasets
of 9 subjects. We used 18.2%(= (36/198)× 100) epoch
signals in 9 subjects’ datasets for validation data and
81.8%(= (162/198) × 100) epoch signals for training
data.

The preliminary experiment was performed to decide
the hyper parameters (including the setting of architec-

2This “epoch” has different meaning from what was defined in
Sec.2.2.1.

ture) of NN. The maximum number of training epochs3

and learning rate are set to 100 and 0.01, respectively.
The architecture is finally determined to be a 10-layer
CNN shown in Table 1. An increasing trend in accu-
racy with the number of layers was observed when we
obtained accuracies of CNNs which have 1–7 layers in
the first convolutional section. Here we set it to 6 be-
cause that difference was not so big. We also obtained
the accuracies using some sets of hyper parameters with
K = 16, 120. Since the accuracies of K = 120 tended
to be higher than those of K = 16, K was set to 120 for
CNNs.

Table 1: Settings of hyper parameters of CNNs.
Order of layers 6C→2CP→2FC

Convolutional layers (C)
Sizes of kernels 5, 5, 5, 5, 5, 5
Numbers of kernels 200, 200, 200, 200, 200, 200

Convolutional pooling layers (CP)
Sizes of kernels 5, 5
Numbers of kernels 200, 200
Sizes of pooling 2,2

Fully-connected layers (FC)
Numbers of units 256, 2
Non-linearities ReLU, softmax
Rates of dropout 0.5, 0.5

b) FD: FDs have a parameter “number of channels” K.
The value of K was selected properly based on the eval-
uation. Hereafter feature FD with number of channels K
is denoted by FD(K).
c) ES: ESs have a fixed parameter “number of chan-
nels” of 16 because of its much explanatory variables.
The varying parameter “frequency components” fb(=
[fmin, fmax], 0 ≤ fmin, fmax ≤ fS/2) was properly se-
lected based on the evaluation. Hereafter the feature ES
with frequency components fb is denoted by ES(fb).
d) SVM: Cubic polynomial function k(x) =

(γ ⟨x, x′⟩+ r)
3 where γ = 1/

√
n feature, r = 0,

and n feature denotes the number of feature dimen-
sions was used as the kernel. The penalty parameter and
the tolerance are set to 1 and 10−3, respectively.
e) RF: In terms of trees, the number of features to con-
sider looking for the best split, the function to measure
the quality of a split, the maximum depth and number of
nodes, the minimum number of samples required to split
an internal node, and the minimum number of samples in
newly created leaves were set to

√
n feature, Gini im-

purity, unlimited, 2, 1, respectively. In terms of forests,
the number of trees and whether to use out-of-bag sam-
ples were set to 500 and False, respectively.

3 Results
Table 2 shows the accuracies of the shallow model

(ES(ω)+RF) and the CNNs. In the table, “no.” represents
the number of the test following 11-fold cross validation
scheme. “ave” represents the average of accuracies and
standard errors of 11 tests. The shallow model compared
with CNNs is decided as ES(ω)+RF in the tests which are
also following same 11-fold cross validation scheme. Ta-
ble 3 shows the averaged accuracies of the shallow mod-
els on each subject’s dataset.

3Actual number of training epochs is smaller than 100 because of
using early stopping.
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Even though raw EEG data are inputted and smaller
training dataset are used for CNNs, the averaged accura-
cies of CNNs are higher than that of the shallow model.
From the result of CNN and CNNPT , the accuracy of pre-
training is higher than that of no pre-training. While there
are substantial differences between datasets of different
subjects, there are also commonality. The commonality
in pre-training can be taken advantage.

Table 2: The accuracies of the shallow model and the
CNNs. CNNPT denotes the CNN with pre-training.

subject no. shallow CNN CNNPT no. shallow CNN CNNPT

1 35.4 34.0 49.8 2 43.4 38.8 50.1
3 40.1 37.9 31.2 4 83.3 87.6 86.4
5 91.9 92.2 57.0 6 72.6 85.6 84.3

s01 7 96.4 99.5 99.2 8 73.4 72.9 92.7
9 98.8 100.0 99.8 10 99.5 100.0 93.0
11 82.1 97.1 93.0 ave 74.3±6.9 76.5±7.6 75.8±7.1
1 50.0 51.2 50.1 2 50.0 50.1 50.1
3 93.1 55.4 88.1 4 83.3 87.6 86.4
5 99.3 100.0 99.9 6 97.3 100.0 100.0

s02 7 70.1 49.9 49.9 8 49.2 49.9 49.9
9 90.3 58.4 98.6 10 87.7 100.0 93.0
11 1.6 0.0 0.0 ave 71.5±8.9 59.9±8.1 70.9±3.8
1 51.5 64.1 62.9 2 54.3 56.6 66.5
3 46.7 50.6 94.5 4 82.0 74.6 71.0
5 22.1 47.4 58.1 6 76.2 52.3 85.6

s03 7 61.0 92.6 91.3 8 70.8 94.9 65.0
9 47.4 52.3 62.5 10 58.7 83.6 84.5
11 75.1 91.3 85.0 ave 58.7±4.9 69.1±5.4 75.2±3.8

5 subjects ave 68.1±4.3 68.5±4.3 73.9±4.2

Table 3: The averaged accuracies of shallow mod-
els. The standard errors are omitted. In our notation,
θ, α, β, γ, ω, ρ, and all denote frequency bands 4–8, 8–
13, 13–30, 30–64, 64–128, 128–256, and 0–256 [Hz],
respectively.

model s01 s02 s03 ave model s01 s02 s03 ave
FD(16) +SVM 58.7 67.1 66.2 64.0 ES(θ) +RF 55.4 65.1 50.9 57.1
FD(120) ′′ 70.1 59.2 68.4 65.9 ES(α) ′′ 63.0 66.0 55.9 61.6
FD(16) +RF 69.2 60.2 64.2 64.5 ES(β) ′′ 66.1 68.1 58.0 64.1
FD(120) ′′ 70.3 62.8 69.1 67.4 ES(γ) ′′ 70.8 70.3 62.3 67.8

ES(ω) ′′ 74.3 71.5 58.7 68.1
ES(ρ) ′′ 71.0 70.7 62.0 67.9

ES(all) ′′ 72.1 71.3 59.4 67.5

4 Discussion
Fundamentally, massive data are needed for supervised

DNNs like CNNs to learn good features from raw data.
CNNs in general cannot recognize test data correctly
with high accuracy on relatively small datasets because
of overfitting. However, the result shows the possibility
that the basic CNN is comparable to shallow models in
terms of averaged accuracy of EEG-ER. Indeed, the re-
sult does not necessarily ensure the availability of CNNs
as EEG-ER models because the amount of test data is
small in this study. Considering this absence of persua-
siveness, we experimented with more test data of subjects
in the next study[6]. It verifies that the CNN is more suit-
able for processing of massive data and also illustrates
that there is the interpersonal commonality of EEG prop-
erties.

From the accuracies of ES+RF in Table 3, it is sur-
mised that there is interpersonal difference of the fre-
quency bands where features appear. This difference ex-
ists not only in methods of inducing emotions or persons
but also recording trials. Therefore, optimizing the fre-
quency filter in learning of NN is more desirable than
separating the processing of the NN and the frequency
filter.

Emotions can be classified as longer ones or shorter
ones in terms of the duration. The purpose of this work
is to recognize emotions of longer duration. Recogniz-
ing emotions of shorter duration can be done by using the
methodology of ERP (Event Related Potential). It is bet-
ter for the system to have higher resolution. However, we
should give priority to suitability of the system’s output
over high resolution. It is desirable to decide the mini-
mal window’s size which makes the accuracy higher in
experiments.

5 Conclusion
The EEG-ER models using CNNs were developed in

order to make the accuracy higher than that of the shallow
models. Even the basic CNN had high accuracy using
slight smaller training data than the conventional models.
Moreover, we showed that supervised pre-training helps
CNNs to increase their accuracies not only in image pro-
cessing but also in EEG-ER.
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Abstract 

We have been developing a cognitive BCI/BMI 
system, “Neurocommunicator” to support 
communication of people with severe motor 
disabilities. The original system can predict a 
user’s decision about a message to be expressed 
by his/her CG avatar, which is based on a real-
time analysis of EEG data, especially event-related 
potentials (ERPs). In this study we attempted to 
use the robot avatar to facilitate the 
communication with its dynamic gestures. Most of 
the subjects (normal volunteers) were able to use 
this system with the high-accuracy decoding 
techniques. 

Keywords Brain-Computer Interface, Brain-Machine
Interface, EEG, Robot, Avatar

1 Introduction 

Brain-computer/machine interfaces (BCI/BMI) to 
provide a direct link between the brain and external 
devices [1-4]. As one of those systems, we have been 
developing the “Neurocommunicator” [5], an EEG-
based communication aid for people with severe motor 
disabilities. This system uses a compact headgear with 
wireless EEG recorder to analyze an event-related 
potential (ERP) to the sequentially flashed pictograms 
to indicate a desired message, and predicts the user’s 
choice in the brain in a short time (3-5 sec). The 
message is expressed by the animation talk of the CG 
avatar.  

In this study, we have extended the system so that 
the robot avatar (small but humanoid type) expressed 
the message by its dynamic gesture as well as its 
artificial voice (Fig. 1). We examined the accuracy of 
the neural decoding of the target pictograms, each of 
which was linked to the specific gesture of the robot.  

2 Methods 

We collected EEG data from 8 normal adult subjects 
under the protocol approved by the guideline and the 
committee of our institutes. All subjects were tested in 
two sessions (‘training’ and ‘test’) each. Each session 
consisted of 8 ‘games’. In each game, the subject 
focused attention on one of 8 pictograms (‘target’) in 
the matrix, which was prescribed by the investigator. 
During each game, each pictogram was flashed at 8Hz, 
displaying 4 Japanese characters (e.g. “Ko-Re-Ka-Na”) 

with green color (Fig. 1①). In a brock of 8 flashes, all 8 
pictograms were selected in a pseudorandom fashion. A 
block of 8 flashes were consecutively repeated 15 times 
for ‘training’ session and 5 times for ‘test’ session. 
Eight channels of EEG data were obtained by a custom-
made recording system, in which a wireless EEG 
recorder was attached on a plastic headgear that 
localized the electrode positions around the top of the 
head (Fig. 1②).	 In the PC, the original 8 channels of 
continuous EEG data were downsampled to 21.3Hz 
after additional software bandpass filter (1-30Hz). Then 
the data were aligned to extract the event-related 
potential (ERP) associated with the onset of the single 
flash of each pictogram.		

We performed linear discriminant analysis (LDA) to 
generate a pattern recognition model after the training 
session. The accuracy (success rate of target prediction) 
in the test session was examined using the single model 
generated by all data of the training session of each 
subject. The optimized LDA model was designated to 
produce a high score for the target and a low score for 
the non-target. The pictogram with the highest total 
(accumulative) discriminant score was regarded as the 
target (Fig. 1③). In the test session real-time feedback 
was given to the subject about the prediction of the 
target on the final (5th) block after each game. The 
message linked to the selected pictogram was expressed 
by the voice and the related gesture of humanoid robot 
(modified by the Kondo-Kagaku, KHR ver.2.0) (Fig. 1
④).

After the 8 games of a session, the success rate was
computed by dividing the number of the successfully 
predicted games (0 to 8) by the number of total games 
(8) in each subject. We mainly focused on the success
rate on the final (5th) block of the test session as the
index of the accuracy of our system.

3 Results 

In this study, it was expected for the flash of the target 
pictogram to extract the P300, which should be strong 
enough for the real-time prediction. We first made sure 
whether the P300 was included, at least, in the average 
ERP. We compared average ERPs between the target 
and non-target conditions in the training session. The 
response to the target was typically stronger than that to 
the non-target, showing a positive peak around 200-
400ms, to some extent, at all electrode positions. 
Although the waveform of the P300 was similar, within 
the subject, between the training and the test session, 
we observed a variety of individual differences among 
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subjects about 
temporal patterns of 
waveforms at each 
electrode location. 
Instead of the 
waveform of P300 
itself, the converted 
LDA scores made it 
possible to predict 
the target in single 
games. We compared 
the accumulative 
LDA scores among 
pictograms. While 
the target pictogram 
generally produced 
the positive LDA 
score, the non-target 
pictograms generally 
produced the 
negative LDA scores. 
Although the non-
target pictograms 
sometimes showed 
the positive score too, 
the pictogram with 
the highest scores tended to be the correct target (if not 
such prediction were considered to be unsuccessful). 
We compared the accumulative LDA scores among 
pictograms and found that most of the pictogram with 
the highest LDA score was the correct target,	 in	 which	
the	 related	 message	 was	 extracted	 by	 the	 avatar.	
Average success rate of all 8 subjects was 96% at the 
5th block in the test session. 

4 Conclusions  

We have succeeded in the development of the 
practical EEG-based robot control system as an 
extension of the Neurocommunicator. The robot avatar 
efficiently conveys affective information with its 
dynamic gesture, one of the representative nonverbal 
behavior which is important for communicating feelings 
and attitude in any face-to-face communication [6]. 

The result about accuracy of decoding (96% of 
success rate at the final/5 block in the test session) 
corresponded to 5 seconds, which made the subjects 
surprised. It is, however, important to speed-up the 
system for smooth communication in daily life of 
patients. Therefore, we are currently working on the 
speed-up of the decoding.  

It is also important to increase the candidate of 
messages/gestures of the robot avatars. In addition to 
the 8 default candidates that are linked to the generation 
of emotional gestures of the robot avatar, we also hope 
to have candidates of the commands to the robot such as 
moving directions as well as actions to help the patients. 
We have already modified the system, in which the 
repetition of the choices by the brain (Fig. 1①-③) 

gives the users more possibilities to control the robot.  
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Abstract 

Driving mental fatigue is a contributing factor that 
causes thousands of traffic accidents. Functional 
brain networks are supposed to reflect the 
interaction dynamics between brain regions. To 
investigate the interactions among distributed 
brain regions of drivers, we constructed binary 
brain networks from EEG data of the mental 
fatigue induced by the simulated driving task. 
Clustering coefficient, characteristic path length 
and global efficiency served as statistical network 
characteristics. The results showed that the 
number of the brain network links decreases with 
the accumulation of the fatigue. The statistical 
characteristics of functional brain networks 
embodied the risk of driving fatigue. 

Keywords Driver fatigue, EEG, Brain networks 

1 Introduction 

In transportation system, fatigue is one of the major 
factors that cause thousands of automobile crashes all 
over the world [1]. The death toll in traffic accidents 
caused by fatigue makes up 57% of that in all traffic 
accidents every year [2]. Fatigue is a feeling of extreme 
physical or mental tiredness [3]. Hence how to measure 
the physiological dynamics during driving fatigue 
draws wide concern.  

Numerous physiological indicators are available to 
quantify and assess the fatigue. The 
electroencephalographic (EEG) signal may be one of 
the most significant and reliable measurements since it 
reflects directly human brain activity [4]. Therefore, the 
following computerized analysis is implemented by 
processing the EEG recordings. Many studies have 
shown that fatigue will bring the changes of EEG 
rhythms (i. e. delta, theta, alpha, and beta) [5]–[7]. For 
example, theta rhythms increase and beta waves reduce. 
The papers in [6] and [7] show that α, α/β, θ/β, (α+β)/θ, 
and (θ+α)/(α+β) can be used as the effective indicators 
of driver fatigue. However, these studies use the same 
preselected frequency bands for all subjects, resulting in 
estimators that are partly insensitive to individual 
frequency-band differences. The paper in [8] assesses 
the information on alertness available in each operator’s 
full EEG spectrum, which shows better performance for 
error rate estimation. Since the recorded EEG signals 
are nonlinear, time-varying, space-varying, and 

nonstationary, more and more studies focus on 
nonlinear dynamical analysis. Nonlinear dynamical 
analysis can provide complementary information about 
the dynamics under physiological or psychological 
states compared with classical linear time series 
analysis methods such as Fourier or spectral analysis [9]. 
For example, in [10] , [11] and [12], the nonlinear 
entropy-based methods were used to characterize 
irregularity and complexity of EEG data. The results 
show that the complexity parameters are significantly 
decreased with the fatigue level increasing. 

Nevertheless, the analyzed EEG signals in the 
literatures above are just from the specified electrodes. 
The interactive dynamic information between different 
electrodes has not been considered. This is the novelty 
that this paper brings. 

The neuronal elements of the brain constitute a 
formidably complicated structural network and it has 
also been widely recognized that this anatomical 
substrate supports the dynamic emergence of coherent 
physiological activity in different brain regions to make 
up a functional network [13]. Functional brain networks 
are supposed to reflect the interaction dynamics 
between brain regions [14]. A variety of network 
measures is now available that allow one to characterize 
constructed brain networks. Among these measures 
clustering coefficient, characteristic path length, and 
global efficiency are important statistical characteristics 
of network structure [15]. 

In this paper, we present a binary brain network 
method based on the recorded EEG signals of human 
subjects for driving fatigue analysis. The wavelet-based 
method was used to isolate and remove a wide variety 
of artifacts to obtain corrected EEG. Then the cross-
correlation function of the corrected EEG was 
calculated to construct the binary brain networks of 
different subjects. At last, the clustering coefficient, the 
characteristic path length, and the global efficiency 
were used to measure the characteristics of the 
functional brain networks.  

2 Methods 

2.1  Exper iments and data 

The experiments were conducted on 10 healthy male 
subjects between age of 20 and 35. All the subjects are 
with normal intelligence and without mental disorders. 
During the experiments, they must avoid taking any 
type of medicine and stimulus such as irritant alcohol, 
tea or coffee. Each subject was asked to drive for 2 
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hours to collect the EEG signals in simulated 
driving situation. Standard scalp electrodes were placed 
in accordance with the International 10-20 System: Fp1, 
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, 
P4, T6, O1, and O2. The EEG’s sampling frequency is 
1000Hz. 

2.2  Exper imental data preprocessing 

The raw EEG signals are disturbed by numerous high 
frequency and low frequency noise known as artifacts. 
Wavelet transform is an effective tool for time 
frequency signal analysis and processing [16].  

The wavelet transform decomposes a signal into a set 
of basic functions called wavelets. These basic 
functions are obtained by dilations, contractions and 
shifts of a unique function called wavelet prototype [17]. 
The wavelet transform is divided into the continuous 
wavelet transform (CWT) and the discrete wavelet 
transform (DWT).  

DWT analyses the signal at different frequency bands 
with different resolutions by decomposing the signal 
into a coarse approximation and detailed information. 
DWT employs the sets of scaling functions and wavelet 
functions, which are associated with lowpass filters and 
highpass filters, respectively [18]. The original signal is 
first passed through a pair of high pass and low pass 
filters. After filtering, half of the samples will be 
cleared according to the Nyquist’ rule, and the coarse 
approximation and detailed information can be 
distinguished. At successive levels the approximate 
component is further decomposed. We use wavelet 
decomposition with 4 levels to obtain the EEG range 
we care about (0–30 Hz). Then the wavelet enhanced 
independent component analysis in [19] was used to 
isolate and remove ocular artifacts and body movement 
artifacts to obtain corrected EEG. 

2.3 Construction of brain networks 

Representing the complex system brain as a network 
requires identification of nodes and edges [14]. Here, 
we assign EEG electrodes to the nodes of the brain 
networks. The adjacency relations among the nodes in 
the networks can be described by the adjacency matrix 
A whose element A(i, j) shows the measured edge 
between electrodes (nodes) i and j. A simple and most 
commonly used measure of the edges is the cross-
correlation function [15]. The correlation between EEG 
signals si and sj can be calculated by the following 
equations. 
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We here consider the equal-time cross-correlation 
function, i. e. τ=0. γij is corresponding to the element of 
the cross correlation matrix R, which presents in ith row 
and jth column. 

 The adjacency matrix A can be obtained by the 
correlation matrix R. First, define the adjacency matrix 
A=R. To exclude self-connections of nodes, the 
elements on the main diagonal of A were set to zero. 
The other elements of A reflect the correlation among 
the EEG signals in different channels. Here we 
construct binary brain networks using a thresholding 
approach. If the non-diagonal elements of the adjacency 
matrix A exceed a threshold value T, they will be set to 
1 (i. e. aij=1, i≠j) and to 0 (i. e. aij=0, i≠j) otherwise. 
In order to determine the threshold T, we use the 
connectedness-based method in [20] to make sure the 
constructed networks belong to connected graphs. If 
any two nodes in a graph can be connected by a path 
along edges, the graph is said to be connected. In fact, 
when our brains deal with problems, the nervous 
systems in different functional brain areas need to work 
synergistically. Information can be automatically 
delivered to all the needed nodes (brain regions). That 
means there must be signal transmission pathways. 
Therefore, the model of the connected graph is 
reasonable and the connectedness-based method is 
applicable to healthy EEG.  

2.4  Computation of network 
character istics 

There are two analytic approaches to functional brain 
architecture: namely, functional segregation and 
functional integration [21]. Based on the basic 
principles of functional segregation and functional 
integration, we used the clustering coefficient C, the 
characteristic path length L, and the global efficiency 
Eglobal to measure the characteristics of the functional 
brain networks. 

If there is a link between two nodes, they can be 
called neighbor nodes and they are the nearest to each 
other. If the nearest neighbors of a node are also 
directly connected to each other, they form a cluster 
[22]. The clustering coefficient of a node is the ratio of 
the number of links that exist between the nearest 
neighbors of the chosen node and the number of 
possible links between them. The clustering coefficient 
of a network, C(G), is the average over the clustering 
coefficient of all nodes.  

( , , )

1 2 ( , ) ( , ) ( , )( )
( 1)i j h G i i

a i j a i h a j hC G
N k k∈

=
−∑ ,    (3) 

where G represents the set of a network. N is the total 
number of nodes. ki denotes the detgree, i.e., the 
number of the links of channel i. a(i, j), a(i, h), and a(j, 
h) are the elements of adjacency matrix A. 

The shortest path length d(i, j) is defined as the 
minimum number of links that must be traversed to go 
from node i to node j  [22]. According to the definition, 
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d(i, j) ≥1. The average of the shortest path length 
between all pairs of the nodes of a network is called 
the characteristic path length. 

, ,

1 ( , )
( 1) i j G i j

L d i j
N N ∈ ≠

=
− ∑ ,      (4) 

where d(i, j) is the shortest path length between nodes i 
and j. 

In a network, the efficiency of information 
exchange between two nodes is defined to be inversely 
proportional to the shortest path length. The global  
efficiency of a network is the sum of the efficiencies 
of all node pairs, normalized by maximal number of 
links N(N-1)/2. 

global
, ,

1 1( )
( 1) ( , )i j G i j

E G
N N d i j∈ ≠

=
− ∑ ,   (5) 

where d(i, j) is the shortest path length between nodes i 
and j. 

3 Results and discussion 

Figure 1 shows the binary functional brain networks 
during the experiment of driver fatigue. Considering the 
speed of calculation, we used a sliding window with the 
length of 180 times sampling length to obtain the 
structure change of the brain networks. The window 
moves forward along the experimental data. The three 
graphs are corresponding to the brain networks when 
the window moved to 0h, 1h, and 2h, respectively. As 
showed in Fig. 1, with the accumulation of the fatigue, 
the number of the network links decreases. The link 
number at the end of the experiment is significantly less 
than the link number of the initial state. This indicates 
the interactions among different brain regions are 
weakened during driving fatigue, which may affect the 
brain processing for traffic information.  
 

 
0h                         1h                         2h 

Figure 1: Brain networks during driving fatigue. 

Figures 2-4 shows the statistical characteristics of 
functional brain networks (clustering coefficients, 
characteristic path length, and global efficiency 
respectively). As showed in Fig. 2, the averaged 
clustering coefficients of all the subjects are gradually 
reduced. Densely interconnected neighbors yield high 
clustering coefficients, while sparsely interconnected 
neighbors return low coefficients [15]. Networks with 
low clustering coefficient have smaller resilience, 
which indicates the ability to maintain the normal 

operation of the network is gradually reduced with the 
increase of driver fatigue level. 

 
Figure 2: Clustering coefficient. 

As showed in Fig. 3, the averaged characteristic path 
length of all the subjects gradually increases. It 
illustrates that the integration potential of the brain 
networks is reduced and the information in the brain 
networks flows with difficulty, when the drivers are 
fatigued.  

 
Figure 3: Characteristic path length. 

As showed in Fig. 4, the averaged global efficiency 
of all the subjects gradually decreases. The global 
efficiency reflects the efficiency of communication 
among all the nodes. Therefore, the efficiency of 
information communication and processing is reduced.  

 
Figure 4: Global efficiency. 

Overall, the decreasing clustering coefficients and the 
increasing characteristic path length reflected the fact 
that the small-world property of the networks became 
weak, when the drivers were fatigued. In this case, the 
systems may not maintain the normal operation, 
because the links which can support each other in a 
subset became fewer (see Fig. 2). In addition, the speed 
of information transmission was slower, because the 
probability of the "shortcut" emergence became lower 
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(see Fig. 3). Of course, the global efficiency is reduced 
(see Fig. 4), because it is inversely proportional to the 
characteristic path length (see Eq.4 and Eq.5). In the 
process of the experiments, driver fatigue affected 
normal brain activity, which is quite dangerous in the 
traffic system. Correspondingly the statistical 
characteristics of functional brain networks embodied 
the risk of driver fatigue.  
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Abstract 

The aim of this study is to improve the accuracy 
of the cortical dipole imaging by focusing on the 
filtering property when solving the cortical inverse 
problem. We proposed a spatial inverse filter that 
optimizes the filtering property using a sigmoid 
function. The proposed inverse filter was applied 
to human experimental data of visual evoked 
potentials. As a result, the estimation accuracy 
was improved as compared with the traditional 
inverse techniques.  

Keywords EEG, Cortical Dipole Imaging, Inverse 

Problem, Filtering Property, Visual Evoked Potential

1 Introduction 

The spatial resolution of electroencephalogram 

(EEG) data is limited because of the low conductivity 

of the skull. Cortical dipole imaging that estimates the 

equivalent dipole distribution on a virtual layer within a 

brain from the scalp potential has been proposed to 

solve this problem [1]. The cortical dipole distribution 

is estimated from the scalp potentials by solving an 

inverse problem of the transfer matrix from the dipole 

layer to the scalp surface based on a head model. In the 

present study, we paid attention to filtering property 

when solving the cortical inverse problem in order to 

improve the accuracy of cortical dipole imaging.  

2 Methods 

According to the filtering property, the terms easily 

influenced by noise are reduced when singular value 

decomposition is applied to the inverse solution [2]. 

Figure 1 shows examples of the filter factors of 

Tikhonov regularization, truncated singular value 

decomposition (TSVD), and truncated total least 

squares (TTLS) against the singular values. The terms 

for large singular values were passed while the terms 

for small singular values were attenuated in all filter 

factors. We estimated optimum filtering property using 

the least squares method in the simulation of several 

signal source configurations. A filtering property model 

was constructed by approximating with a sigmoid 

function. Estimated optimal filtering property was 

intermediate between the property of Tikhonov 

regularization and the property of TSVD as shown in 

Fig.1.   

3 Results 

The proposed method was compared with traditional 

inverse techniques in computer simulations. The 

localization with less noise was accomplished by 

sigmoid function. The relative error of the sigmoid 

function is significantly smaller than that of the other 

methods.  

The proposed method was applied to human 

experimental data of visual evoked potential. The EEG 

data were measured from healthy subject after obtaining 

informed consent. The signal was localized at the 

primary visual field in dipole distributions estimated by 

our method. It was possible to represent the process of 

signal propagation through ventral pathway using the 

sigmoid function. In conclusion, the sigmoid function 

was widely applicable in various situations and it would 

be effective for human experimental data.  
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Figure 1: Filter factors of various inverse techniques 

against the singular value. 
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Abstract 

Topography of direction specific response in 
steady-state visual evoked potential (SSVEP) was 
investigated. 64-channel SSVEPs were recorded 
during test stimulus of oscillating vertical 
sinusoidal grating (0.5 or 2 c/deg, 4 or 9 Hz) 
with/without motion adaptation. Phase of 1F 
component under right-adaptation in occipital and 
occipito-temporal area was shifted from that under 
left-adaptation, agreeing with the previous studies. 
The phase-shift topography revealed that the MAE 
direction-specific responses are appeared in 
occipital and occipito-temporal area, and spatial 
and temporal frequency selective, indicating that 
there are several different motion detectors with 
different sensitivity.  

Keywords Motion aftereffect, Motion direction-specific 
response, Perception of movement, SSVEP

1 Introduction 

Noninvasive methods for probing direction-selective 
neuronal activity are of significant value for 
understanding human motion perception. Motion 
aftereffects (MAE) has been used to investigate the 
human motion detection and processing system, 
because MAE isolate neural activity related to the 
processing of motion perception in human.  It has been 
reported that direction-specific activity can be detected 
as phase of the steady-state visual evoked potential 
(SSVEP) [1][2]. Phase shift of 180 degrees were 
obtained from fundamental frequency (1F) components 
of SSVEPs with conditions of left and right adaptation. 
In this study, the effect of spatial and temporal 
frequency on direction specific response topography 
was investigated.  

2 Methods 

Nine healthy university students (males, 23.5±1.3 
years old) with normal vision participated in this 
experiment. Test stimulus was 12 sec oscillating 
vertical sinusoidal grating (0.5 or 2 c/deg, 4 or 9 Hz) 
that presented immediately after the adaptor of 20 sec 
drifting grating (2 or 4.5 deg/s) presenting. EEG was 
recorded during the stimulus using a 64-channel 

Geodesic Sensor Net with 0.1-50Hz filtering. 
Participants’ perceived direction of MAE was 
behaviorally recorded using 2-buttons (left and right) 
during the adaptor and test stimuli presenting. 
Fundamental frequency (1F) component was extracted 
from the EEG during the participants perceived MAE 
by using Fourier analysis.  

3 Results 

As previously presented [3], for all stimuli (0.5 or 2 
c/deg, 4 or 9 Hz), all participants’ perceived MAE 
under motion adaptation conditions. In this report, 1F 
phase of SSVEP during participants’ perceived MAE 
was extracted. The phase under right-adaptation in over 
occipital (O1, Oz and O2) and temporal (T2 and T6) 
cortex area was shifted from that under left-adaptation. 
The phase shift magnitudes were dependent on spatial 
and temporal frequency of stimuli and the electrode 
positions. For 9 Hz, the phase shift magnitude for 0.5 
c/deg was maximum at Oz, but not for 2 c/deg (Fig. 1). 
These spatial and temporal frequency selectivity may 
indicate that there are several different motion detectors 
with different sensitivity.  
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Figure 1: Magnitudes of phase shift between left and 
right motion adapted SSVEP for 9 Hz 
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Abstract

This paper presents the application of Empirical
Mode Decomposition based Multifractal Detrended
Fluctuation Analysis to the surface electromyogra-
phy signals obtained from the patients suffering from
rectal cancer. The electrical activity of external anal
sphincter at different level of treatment is consid-
ered. Two different range of scales are determined
for the calculation of the multifractal spectra. In addi-
tion the results from standard MFDFA and the EMD–
based MFDFA method are compared.

Keywords electromyography, multifractal analysis,
empirical mode decomposition

1 Introduction

Over the last few decades the surface electromyogra-
phy (sEMG) has become a promising apparatus for the
non-invasive analysis of muscles. This work is focused
on quite a unique application of the sEMG concerning the
diagnosis of anal sphincter function during the treatment
process of rectal cancer [1, 2]. Surface EMG is a very
promising method of testing of innervation of muscles.
Since innervation deficits are one of suggested mecha-
nisms for severe treatment related complications in up
to 40% of rectal cancer patients development of proper
innervation assessment methodology is crucial. Proper
evaluation of sEMG signals remains to be a significant
problem inhibiting diagnostic potential of this methodol-
ogy. Regardless of applications, sEMG always represents
highly complex signal with many difficulties in interpre-
tation [3]. Traditional analysis, mainly based on the con-
ventional statistical tests of mean or median brings only
limited knowledge on the actual process hidden behind
the acquired data.

In the context of biosignal interpretation the Multifrac-
tal Detrended Fluctuation Analysis (MFDFA) developed
by Kantelhardt et al. [4] became a popular method for
the study nonlinear phenomena for all types of data. The
MFDFA has been used in many disciplines and still at-
tracts considerable attention in the field of physiology,
economy, climatology, to name but a few. In relation to
the electrophysiological signals, MFDFA brought a sig-
nificant contribution to the analysis of heart rate variabil-
ity [5, 6]. For the Empirical Mode Decomposition (EMD)
the equally wide range of applications can be find, includ-

ing the removal of artifacts and noise reduction from the
signal, also in relation to the surface electromyography
[7]. An advantage for this method is the lack of require-
ments for the use of pre testing process. The EMD also
exhibits better results in the process of the detrending [8]
in comparison for example with the typically used least
square method. Here an approach combining EMD and
MFDFA named EMD based MFDFA is addressed. This
approach outperforms standard MFDFA for large fluctu-
ations [9]. The paper is organized as follows: Section 2
discuss the experimental data. In Section 3, the EMD and
MFDFA methods for data analysis are introduced and il-
lustrated with the data under consideration. The results
are presented in Section 4. The last section summarizes
the results and draws the conclusions.

2 sEMG signal source

Our analysis is focused on the sEMG signals recorded
for the external anal sphincter. The electrical activity of
this specific muscle group is frequently investigated in
the context of the patients with defecation disorders [10].
The sEMG is a non-invasive technique for monitoring of
the anal sphincter function [11, 12, 13]. In this work the
signals of patients suffering from rectal cancer are con-
sidered. The analyzed time series were recorded at four
stages: before the treatment (D1) and one month (D2),
six months (D3) and one year (D4) after the surgical pro-
cedure. The detailed information about the surgery of the
rectal cancer and the role of sEMG for the patient diag-
nosis can be found in [14]. Rectal cancer remains to be
one of the most frequent cancers in humans. It requires
complex multimodal treatment composed of surgery, ir-
radiation and chemotherapy. All those methods of treat-
ment can cause significant stool continence related prob-
lems hence proper assessment of anorecatal innervation
before and after the treatment can be crucial for preven-
tion and treatment of complications. Signals were ob-
tained from 16 pairs of electrodes arranged concentrically
at three levels (5cm, 3cm, 1cm) of rectal canal depth. The
sampling frequency was 2048 Hz, which for the 10 sec-
onds of the measurement gave 20480 data points. For our
calculations signal recorded during voluntary contraction
at the depth of 1 cm was used. This specific choice of
depth was dictated by the maximal amplitude of EMG
signal resulting from the most superficial localisation of
external anal sphincter muscle and the biggest bulk of the
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Figure 1: The raw signals at four stages of rectal cancer
treatment: D1 is assigned to the state before surgery, D2

– D4 correspond to one month, six months and one year
after the surgery, respectively.

muscle at this depth. The signal presented on fig. 1 is in
fact the averaged signal from the first 3 channels which
corresponds to the first three pairs of the electrodes. The
nearest neighbours average was performed due to the fact
that the placement of the probe in consecutive measure-
ments could be inaccurate. In other words the specific
electrodes may not represent exactly the same placement
at the consecutive measurements after the surgery.

3 Fluctuation Analysis

In the following two methods EMD and MFDFA are
incorporated in order to characterise sEMG signals pre-
sented above. Both techniques can be used to trace out
the features of non–linear and non–stationary signals.
The EMD is an iterative technique which decomposes
the signal into finite number of Intrinsig Mode Functions
(IMFs) ci(t) (1). The final residual rn(t) stands for the
actual trend.

x(t) =

n∑
i=1

ci(t) + rn(t) (1)

The calculated signal must satisfied two conditions in or-
der to be IMFs: (i) the number of extrema and the num-
ber of zero crossing must be equal or differ at most by
one; and (ii) the mean value of the upper and lower enve-
lope defined by local maxima and minima must be zero.
The standard EMD method often faces some difficulties,
which are recurrently the consequence of signal intermit-
tency referred to as Mode Mixing problem [15]. En-
semble Empirical Mode Decomposition (EEMD, 2009)
[15] and later Complete Ensemble Empirical Mode De-
composition (CEEMD, 2011) [16] have been proposed in
order to overcome this complication. Both methods are
based on the averaging over several realisations of Gaus-
sian noise artificially added to the original signal. For this

publication, however, we use only standard EMD due to
the fact that only residual rn, i.e. the data trend, is needed
for further calculations and none of the individual IMFs
are considered here explicitly.

MFDFA is based on the scaling properties of the fluc-
tuations. The brief description of the method is presented
below, however, for the detailed description we suggest
works by Kantelhardt et al. [4, 17], Ihlen [18] or Salat
et al. [19]. The procedure starts with calculation of the
profile yi as the cumulative sum of the data xi with the
subtracted mean 〈x〉: yi =

∑i
k=1[xi−〈x〉]. Next, the cu-

mulative signal yi is split into Ns equal non-overlapping
segments of size s. Here for the length of the segments
we use powers of two, s = 2r, r = 4 . . . 11. For all seg-
ments v = 1, . . . , Ns the local trend ymv,i is calculated. At
this point our analysis was branched into standard method
based on DFA algorithm and non-standard one based on
EMD. The former method is based on the least–square fit
of the order m. In this work m = 2 was chosen. The
latter utilizes the fact that the residual rn represents the
local trend, thus the standard polynomial fitting (DFA)
can be replaced by a residuum based trend for each seg-
ment [8, 20]. An example of local trends calculated with
both methods is presented on fig. 2 for the segment size
s = 64. The slight differences between solid black and
red lines, which represent DFA and EMD method, re-
spectively, have strong influence on the resulting fractal
spectrum.

-74

0

130

1
8
 sec

µV
DFA EMD

Figure 2: Two detrending methods: DFA (solid black)
and EMD (solid red) are presented for the profile yi of
the sEMG data at a stage D1 (dashed blue). The visible
differences result in shifted fractal spectrum.

Next the variance F 2 as a function of the segment size
s is calculated for each segment v separately

F 2(s, v) ≡ 1

s

s∑
i=1

(
ymv,i − yv,i

)2
. (2)

As the next step the fluctuation function being the qth sta-
tistical moment of the calculated variance is determined

Fq(s) =


(

1
2Ns

∑2Ns

v=1[F 2(s, v)]
q
2

) 1
q

q 6= 0

exp
{

1
4Ns

∑2Ns

v=1 ln
[
F 2(s, v)

]}
q = 0

(3)

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

86



In the last step the determination of the scaling law
Fq(s) ∼ sh(q) of the fluctuation function (3) is performed
with the use of the log–log plots of Fq(s) versus seg-
ment sizes s for all values of q Clearly, MFDFA is not

24 25 26 27 28 29 210 211

s

0

5

10

15

q=−4

q=−2

q=0

q=2

q=4

x EMD   + DFA

Fq (s)

Figure 3: q-th order fluctuation function (3) with both
DFA(2) and EMD detrending methods presented for data
before the surgery D1 for selected values of q. Charac-
teristics were artificially shifted for better visibility.

a black–box method and always requires some individual
decisions. First of all, the choice of the scaling range can
have significant impact on the appropriate estimation of
the fluctuation function (Fq) and consequently the final
results [6, 18]. The length of the analyzed time series N
consists of 20480 data points. For the calculations pre-
sented in this work, the considered range of scales are
between s ∈ [24, 211]. The q-order parameter should
consist of positive and negative values in order to detect
periods with small and large fluctuations [18]. In our case
q ∈ [−5, 5] were chosen. The set of q-order fluctuation
functions Fq vs segment size s is presented in Fig. 3. The
two different scale ranges are clearly visible for all Fq(s)
characteristics. This bisection into two distinct scaling
regimes plays a crucial role for determination the q-order
Hurst exponent h(q) and wherefore on the further analy-
sis. The Fig. 3 presents results for DFA and EMD based
detrending method. Two separate scaling domains was
accepted, namely s ∈ [24, 26] and s ∈ [28, 210]. Further
analysis have been performed for both of this regions.
The middle values s ∈ (26, 28) are omitted, as there is
no clear linear scaling present.

4 Multifractal spectra

The q-order Hurst exponent h(q) is required in order
to calculate the further dependencies. First quantity is
the mass exponent obtained from τ(q) = qh(q) − 1. It
is than used to calculate a q–order singularity exponent
α = τ ′(q) where the prime means differentiation with the
respect to the argument. This quantity is also known as a
Hölder exponent. From the above the q–order singularity
dimension

f(α) = qα− τ(q) = q[α− h(q)] + 1. (4)

can be constructed. The singularity dimension f(α) is
related to the mass exponent τ(q) by Legendre transform.
The multifractal spectrum, i.e. the dependence f(α) vs α
is the final result of MFDFA method.

For all of the examined cases and for all four levels of
treatment process D1 – D4 the wide spectra for the short
scales s < 26 can be observed. For the large scales s >
28 the small sets of points located around {0, 1} is visible,
c.f. Fig. 4. This indicates the multifractal character of
the sEMG signal for the short scales s < 26 and rather
monofractal character for large scales s > 28. On the
comparison of the spectra obtained by the two methods
a shift towards the smaller values of α (left) side of the
spectrum for the small scales s < 26 is visible for all
sEMG signals in the case of the EMD–based–MFDFA.
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D1EMD D1DFA
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D3EMD D3DFA
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f(
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Figure 4: Multifractal spectrum calculated at the four
stages of rectal cancer treatment D1 – D4. At each panel
two sets of distinct spectra can be found: right which cor-
responds to the scaling region s < 26 and left for s > 28.
For each scaling regions two spectra are presented – for
the EMD-based MFDFA (dark solid lines) and standard
DFA-based MFDFA (light dashed lines). One can no-
tice the generally found degeneracy of the spectra for
s > 28 and the shift towards the smaller values of α for
the EMD-based detrending.

5 Conclusions

The paper tests the multifractal character of the sur-
face electromyography signal recorded at the external
anal sphincter. The multifractal spectra calculated with
the standard Multifractal Detrended Fluctuation Anal-
ysis is compared with Empirical Mode Decomposition
based MFDFA. Table 1 presents the average values of
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the spectrum width 〈∆〉 and the specific singularity expo-
nent f(αmax) = 1 which corresponds to the maximum
of the spectrum calculated for all of the 16 electrodes at
each treatment state. For all the analyzed time series, two
distinct scaling regions were identified. The spectra cal-
culated for both regions exhibit the shift in the case of
short scales.he non-standard EMD-based-MFDFA shifts
the spectrum towards the lower values of singularity ex-
ponent α – c.f. Fig. 4 and table 1. For the large
scales s > 28 both multifractal methods suggests only
monofractal properties of the sEMD signal.

Table 1: Average values of the spectrum width 〈∆〉 and
maximum of spectrum αmax together with the standard
deviations presented for all channels at each state of the
treatment D1 – D4. Results are presented for MFDFA
and EMD based MFDFA method.

Average spectrum width 〈∆〉 for s < 26

D1 D2 D3 D4

DFA
1.381
± 0.348

1.364
± 0.320

1.427
± 0.243

1.401
± 0.264

EMD
1.096
± 0.176

1.086
± 0.264

1.254
± 0.254

1.124
± 0.276

Average spectrum width 〈∆〉 for s > 28

DFA
0.076
± 0.017

0.085
± 0.019

0.08
± 0.02

0.099
± 0.019

EMD
0.049
± 0.014

0.059
± 0.20

0.049
± 0.017

0.071
± 0.021

Maximum of the spectrum αmax for s < 26

DFA
1.596
± 0.055

1.583
± 0.103

1.620
± 0.071

1.608
± 0.101

EMD
1.390
± 0.053

1.390
± 0.91

1.410
± 0.066

1.404
± 0.087

Maximum of the spectrum αmax for s > 28

DFA
0.019
± 0.003

0.022
± 0.002

0.019
± 0.003

0.021
± 0.003

EMD
0.011
± 0.003

0.012
± 0.004

0.010
± 0.004

0.010
± 0.002
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modulated pulsatile electric stimuli in auditory nerve fiber models
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Abstract

This paper presents modeling of the spike trains
of auditory nerve fiber (ANF) models stimulated by
sinusoidally modulated pulsatile electric stimuli with
inhomogeneous Poisson processes. It was inves-
tigated whether or not the intensity function of in-
homogeneous Poisson process was represented by
a periodic function of von Mises distribution. The
results of computer simulations show that the in-
tensity function estimated from the parameters of
von Mises distribution is agreed well with the post-
stimulus time histogram at a smaller modulation
depth by performing the goodness-of-fit hypothesis
test, Kuiper’s test. These findings may play a key
role in determining optimal parameters of pulsatile
electric stimuli, and further in the design of better
auditory neural prostheses.

Keywords Random Point Process, Electrical Stimu-
lation, Auditory Neural Prostheses

1 Introduction

Periodic or cyclic phenomena have been quantitatively
analyzed by directional statistics, like von Mises distribu-
tion, [1]. The auditory nerve spikes in response to natural
sound pressure have also been expressed as directional
statistics with random point processes [2], [3],[4].

However, it is yet unclear whether or not the elec-
trically stimulated auditory nerves could be represented
by inhomogeneous Poisson process [5] with the intensity
function specified by a periodic function of von Mises
distribution, although some research regarding a point
process framework has been reported [6].

The objective of this article was to investigate whether
or not the spike trains in response to sinusoidally mod-
ulated pulsatile electric stimuli could be modeled by in-
homogeneous Poisson process whose intensity function
was represented by a periodic function of von Mises dis-
tribution through computer simulations.

The intensity function of inhomogeneous Poisson pro-
cess, λ(t), can be expressed as a periodic function of von
Mises distribution:

λ(t) = lim
∆→0

Pr[N [t, t+∆) = 1]

∆

= Xexp(κcos(2πft+ µ)) (1)

where N(t) denotes the counting process, f denotes si-
nusoidal frequency, and κ, and µ denote the parameters
of von Mises distribution. X stands for the parameter
relating to the firing rate.

In this study, the validity of modeling is assessed by
performing the single sample goodness-of-fit hypothesis
test, Kuiper’s test [9], as the modulation depth of sinu-
soidally modulated pulsatile electric stimuli is varied.

2 Methods

The ANFs were represented by a multi-compartment
cable model with a spiral ganglion with a diameter of
27 µm, and 40 nodes of Ranvier. The parameters of
the ANF model are described in [7]. The 40 nodes of
Ranvier consisted of stochastic ion channels, 180 sodium
channels, and 100 potassium channels, in order to gen-
erate plausible neural responses, like those observed in
cat single-fiber experiments. The stochastic ion chan-
nels were implemented by the computationally efficient
channel-number-tracking algorithm [8].

The transmembrane potentials of 200 ms in time
length were generated for each simulation in which sam-
pling steps were set at 2 µs. The stimulating electrode
was located at a distance of 1 mm above the 2nd node of
Ranvier. The stimulating current, Istim(t), was expressed
as:

Istim(t) = Ipulse(t){1 +
m

100
sin(2πft+Φ)} (2)

where f stands for the sinusoidal frequency set at 20 Hz,
Φ denotes a randomized initial phase taking a value be-
tween 0 and 2π, m designates a modulation depth, set at
5, 8, 10, 12, 15, 17, or 20 % and where Ipulse(t) denotes
the unmodulated biphasic, periodic pulsatile waveform at
a pulse amplitude of 0.275 mA, a pulse frequency of 250
Hz, and a pulse duration of 40 µs.

The spike firing time was detected by determining
when the transmembrane potential took the peak ampli-
tude and was greater than 50% of the peak amplitude of
typical action potentials. The post-stimulus time (PST)
histogram and period histogram were generated from the
spike trains in response to the stimulating current pre-
sented repeatedly 150 times.

The parameters of von Mises distribution were esti-
mated from sample realizations of the spike trains of the
ANF models in response to sinusoidally modulated low-
rate pulsatile electric stimuli by maximizing the log like-
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lihood function of inhomogeneous Poisson process:

L(N(t)|θ) = −
∫ T

0

λ(σ)dσ +

∫ T

0

ln[λ(σ)]dN(σ)

= X

∫ T

0

eκcos(2πfσ+µ)dσ +N(T )ln(X)

+ κ

∫ T

0

cos(2πfσ + µ)dN(σ) (3)

where θ = [X κ µ]T denotes the parameters of von Mises
distribution.
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Figure 1: The stimulating current waveform (top), the dot
raster plot (middle), and PST histogram (bottom) with the
intensity function estimated from the parameters of von
Mises distribution (thick red line) at X̂=11.67, κ̂=1.26,
and µ̂=0.56, those corresponding to a firing rate of 16.77,
and a vector strength of 0.53 at f =20 Hz and m= 5 %.
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Figure 2: The stimulating current waveform (top), the dot
raster plot (middle), and PST histogram (bottom) with the
intensity function estimated from the parameters of von
Mises distribution (thick red line) at X̂=8.91, κ̂=2.74, and
µ̂=0.60, those corresponding to a firing rate of 35.57, and
a vector strength of 0.78 at f =20 Hz and m= 12 %.

The single sample goodness-of-fit hypothesis test,
Kuiper’s test, was performed to determine if the random
sample data could have the hypothesized continuous cu-
mulative distribution function. The null hypothesis in

this study is as follows: “The periodic spike timing data
are sampled from a population of von Mises distribu-
tion”. The significance level was set at 5 %. Kuiper’s
test is utilized for directional or circular data, instead of
Kolmogorov-Smirnov (K-S) test, since the K-S test tends
to be sensitive around median value of the distribution
and less sensitive at the distribution tails.
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Figure 3: The stimulating current waveform (top), the dot
raster plot (middle), and PST histogram (bottom) with the
intensity function estimated from the parameters of von
Mises distribution (thick red line) at X̂=14.70, κ̂=2.90,
and µ̂=0.59, those corresponding to a firing rate of 65.97,
and a vector strength of 0.79 at f =20 Hz and m= 20 %.
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Figure 4: The cumulative distribution function (CDF)
of von Mises distribution as a function of angle [0, 2π)
and the sample cumulative distribution function calcu-
lated from the period histogram at f =20 Hz and m= 5
%. The null hypothesis that the sample was taken from a
population with cumulative distribution function was not
rejected at a significance level of 5 % according to sin-
gle sample goodness-of-fit hypothesis test for directional
statistics, Kuiper’s test.

3 Results

The sinusoidally modulated pulsatile electric stimuli as
a function of time for 200 ms at f= 20 Hz and m= 5, 12,
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and 20 % are depicted in the top row of Figs. 1, 2, and
3. The dot raster plots of 150 spike trains are shown in
the middle row of figures. The post-stimulus time (PST)
histogram is drawn with a bin width of 4 ms in the bottom
row of figures, and the intensity function calculated from
the estimated parameters is superimposed as well.

The parameters of von Mises distribution were esti-
mated with the maximum likelihood method from 150
sample realizations of the spike trains: X̂=11.67, κ̂=1.26,
and µ̂=0.56 at m= 5 %, X̂=8.91, κ̂=2.74, and µ̂=0.60 at
m= 12 %, and X̂=14.70, κ̂=2.90, and µ̂=0.59 at m= 20
%.

At m= 5 %, the intensity function estimated from the
parameters described above looks similar to PST his-
togram, as shown in Fig.1, but the vector strength (VS =
0.53) calculated from κ is not good enough, since an op-
timal value of VS is found to be about 0.7-0.8 in a single
auditory nerve fiber [10]. The estimated intensity func-
tion shows a good agreement with the PST histogram,
and the VS is estimated to be 0.78, at m= 12 %, as shown
in Fig. 2. At m= 20 %, the estimated intensity function
would look a little bit different than PST histogram, as
shown in Fig.3. The intensity function estimated from
the parameters of von Mises distribution is shown to be
a good agreement qualitatively with the PST histogram
obtained from the spike trains in response to the electric
stimuli repeatedly presented 150 times, as shown in the
bottom row of Figs 1-3.
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Figure 5: The cumulative distribution function (CDF)
of von Mises distribution as a function of angle [0, 2π)
and the sample cumulative distribution function calcu-
lated from the period histogram at f =20 Hz and m= 12
%. The null hypothesis that the sample was taken from a
population with cumulative distribution function was not
rejected at a significance level of 5 % according to sin-
gle sample goodness-of-fit hypothesis test for directional
statistics, Kuiper’s test.

To quantitatively assess the goodness-of-fit of von
Mises distributions, Kuiper’s test [9] was performed for
period histogram at a significance level of 5 %, while the
modulation depth m was varied as 5, 8, 10, 12, 15, 17,
and 20 %.

Fig.4 shows the cumulative distribution function
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Figure 6: The cumulative distribution function (CDF)
of von Mises distribution as a function of angle [0, 2π)
and the sample cumulative distribution function calcu-
lated from the period histogram at f =20 Hz and m= 20
%. The null hypothesis that the sample was taken from
a population with cumulative distribution function was
rejected at a significance level of 5 % according to sin-
gle sample goodness-of-fit hypothesis test for directional
statistics, Kuiper’s test.

(CDF) of von Mises distribution as a function of angle
[0, 2π) and the sample cumulative distribution function
calculated from the period histogram at f =20 Hz and
m= 5 % (See the bottom row of Fig. 1). The null hypoth-
esis that the sample data were taken from a population of
von Mises distribution was not rejected at a significance
level of 5 % and at m= 5 %.

Fig.5 also shows the CDF of von Mises distribution
and the sample cumulative distribution function calcu-
lated from the period histogram at f =20 Hz and m=
12 % (See the bottom row of Fig. 2). The null hypothesis
was not rejected at a significance level of 5 % and at m=
12 %.

At m= 20 %, the null hypothesis was rejected at a sig-
nificance level of 5 %, due to the difference between two
curves in Fig. 6, like the curve of the intensity function
looks different from that of the PST histogram in the bot-
tom of Fig.3.

It is summarized that the null hypothesis was not re-
jected at m = 5, 8, 10, and 12 %, whereas the null hy-
pothesis was rejected at m = 15, 17, and 20 %. It follows
that the goodness-of-fit tended to disappear as the mod-
ulation depth m was increased greater than about 15 %,
since the shape of period histogram tended to be close to
uniform distribution.

4 Concluding remarks

It has been shown that the spike trains of ANF models
in response to sinusoidally modulated pulsatile electric
stimuli can be modeled by inhomogeneous Poisson pro-
cess whose intensity function is represented by a periodic
function of von Mises distribution, when the modulation
depth m is set at or below 12 %. At a modulation depth
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greater than 12 %, the goodness-of-fit hypothesis was re-
jected by Kuiper’s test with a significance level of 5 %
due to a saturation of spike firing rates.

It follows from the above that the modulation depth is
related to the parameters of von Mises distribution, and
likewise that the stimulating waveforms can be expected
to be determined on the basis of the parameters of von
Mises distribution, X , and κ, under the situation where
the spike firing rate is not saturated.

However, the modeling of inhomogeneous Poisson
process without temporal history in the present study
would not be good enough, because the neural spike
trains are usually considered a random point process with
spike timing history due to neural refractoriness. It would
be worthwhile to incorporate the spike firing history into
random point processes, when the vibration of sinusoidal
modulation waveform could not be fast enough compared
to neural refractory periods. Likewise, in the present
study, statistical analyses were performed for only three
cases, and the modulation frequency was set just for one
case. Therefore, it would be necessary to access the va-
lidity of the proposed model as the parameters are widely
varied in future investigations.

In conclusion, these findings may play a key role in de-
termining optimal parameters of pulsatile electric stimuli,
and further in the design of better auditory neural prosthe-
ses.
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Abstract 

Cerebral cortex contains two types of neurons, 
excitatory (glutamatergic) and inhibitory 
(GABAergic) neurons. The ratio of both neurons is 
important to maintain cortical function. In order to 
elucidate the contribution of GABA-mediated 
inhibition to cortical function, it is important to know 
how spontaneous activity patterns of neuronal 
network are modulated by alteration in 
excitation/inhibition balance. We aimed to 
construct neuronal networks with various 
excitatory/inhibitory conditions in vitro using 
induced pluripotent stem (iPS) cells, and to 
analyze activity patterns of the iPS cell-derived 
neuronal networks using a microelectrode array. 

Keywords Induced pluripotent stem cell-derived 

neurons, Excitation/inhibition balance, Cortical neuronal 
network, Network burst

1 Introduction 

Cerebral cortex contains two types of neurons, 

excitatory and inhibitory neurons. The excitation/ 

inhibition balance is important to maintain cortical 

function. Excessive excitation can cause neurological 

disorders such as autism, schizophrenia and epilepsy 

[1][2]. In order to elucidate the contribution of GABA-

mediated inhibition to maintenance of cortical function, 

it is important to know how spontaneous activity 

patterns of neuronal network are modulated by 

alteration in excitation/inhibition balance. However, it 

is difficult to alter neuronal network structure or ratio of 

excitatory/inhibitory neurons in vivo. 

Here, we aimed to construct neuronal networks with 

various excitatory/inhibitory conditions in vitro using 

induced pluripotent stem (iPS) cells, and to record and 

analyze activity patterns of the neuronal networks using 

a microelectrode array (MEA) [3]. 

2 Methods 

2.1 Neural Induction of iPS Cells 

Mouse iPS cells were induced to differentiate into 

cortical excitatory/inhibitory neurons selectively. The 

mouse iPS cell line (iPS-Stm-FB/gfp-99-1) [4][5] was 

provided by RIKEN Bio Resource Center through the 

Project for Realization of Regenerative Medicine and 

the National Bio-Resource Project of the MEXT, Japan. 

We constructed three types of neuronal populations 

from iPS cells with morphogen-based induction 

methods: (1) excitatory-rich population (Exc), in which 

cyclopamine was supplemented to medium; (2) 

inhibitory-rich population (Inh), in which smoothened 

agonist was supplemented; (3) morphogen-free control 

population (Cont), in which no morphogen was 

supplemented and mixture of excitatory/inhibitory 

neurons was expected to be formed. Cyclopamine and 

smoothened agonist induces the dorsal and ventral part 

of the forebrain, where excitatory and inhibitory 

neurons are derived in vivo, respectively [6]. Neural 

induction was initiated 6 days before seeding on MEAs. 

2.2 Activity Recording and Analysis 

Activity patterns of iPS cell-derived neurons were 

recorded and analyzed. Three types of neuronal 

populations induced with the morphogen-based 

methods were passaged onto MEAs separately (day 0). 

From day 5, spontaneous activity was recorded for 20 

min once a week. 

Relationships between neuronal activity patterns and 

neuronal network conditions were analyzed. 

Synchronized network bursts between multiple 

electrodes were detected with a method reported in a 

previous study [7]. For evaluation of burst dominance 

level in neuronal activity, an index named Burstiness 

was used. Burstiness indicates a ratio of the number of 

spikes included in network bursts to all detected spikes. 

3 Results and Discussion 

3.1 Neural Differentiation 

Fig. 1 (upper) shows an immunofluorescent image of 

the differentiated cells on day 3. Nestin
+
 fibers (red) and 

microtubule- associated protein 2 (MAP2)
+
 cells (green) 

were observed. Nuclei were stained with DAPI (blue). 

In Fig. 1 (lower), on day 9, β3-tubulin
+
 processes (blue) 

are shown. Some of those processes co-localized 

GABA (red) in all three iPS cell-derived cell 

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

93



populations induced with the morphogen-based 

methods. The results of the immunocytochemistry 

indicate that iPS cells differentiated to Nestin
+
 neural 

stem cells and finally to neurons including GABAergic 

neurons. Thus, we successfully induced neural 

differentiation of mouse iPS cells. 

3.2 Maturation and Bursts of Neurons 

As a result of MEA recording, in all iPS cell-derived 

cell populations, spontaneous activities were observed 

at a multiple electrodes on day 12, although there were 

few activities on day 5. Spike frequency increased 

gradually until about 1 month and became stable. From 

day 12, network burst activities among several 

electrodes were observed, especially strongly in Exc, 

although there were few bursts in Inh. About 1 month 

after seeding, burst rate, inter-burst interval (IBI), burst 

duration, and Burstiness reached steady state in all three 

populations. In addition, Burstiness level in each of 

three populations was different, namely, high, middle 

and low level in Exc, Cont and Inh, respectively. 

According to the results of MEA recording, it is 

suggested that iPS cell-derived neurons acquired a 

neuronal property between day 5 and 12 and that 

excitatory synapses were formed by day 12. 

Developmental changes in the indices, such as spike 

rate, burst rate, IBI, burst duration and Burstiness, show 

that it took about 1 month for iPS cell-derived neurons 

to mature. Moreover, the level of Burstiness was the 

highest in Exc and the lowest Inh. This difference might 

be because of the network condition. In other words, in 

Exc and Inh, more glutamatergic and GABAergic 

neurons were formed, and glutamate-mediated 

excitation and GABA-mediated inhibition might be 

dominant, respectively. 

Taken together, our results indicate that neurons 

differentiated from iPS cells with selective induction 

methods can be a suitable tool for studying the 

contribution of GABA-mediated inhibition to neuronal 

network activity. 

 

 

Figure 1: Mouse iPS cell-derived neural cells. 

4 Conclusion 

In this study, mouse iPS cells were differentiated into 

neurons including GABAergic neurons with 

morphogen-based selective induction methods. 

Spontaneous activities and synchronized firing of iPS 

cell-derived neuronal populations were observed by 

MEA recording, suggesting that they functionally 

matured and formed synaptic connections. Therefore, 

our culture system combining iPS cell-derived neurons 

with MEA can be of use in elucidating the role of 

GABAergic neurons in cortical network. In the future, 

we plan to confirm and control excitatory/inhibitory 

ratio in mouse iPS cell-derived neuronal networks 

induced with selective induction methods. 
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Abstract

The power spectral density analysis of the medi-
cal signals obtained from the patients suffering from
rectal cancer is presented. The exponential and
stretched–exponential behaviour of the electrical ac-
tivity of external anus sphincter are found and pre-
sented for all stages of medical treatment.

Keywords electromyography, spectral density,
stretched exponential

1 Introduction

Around 14 million of new cases and 8 million of cancer
related deaths are recorded each year [1]. There are more
than 100 types of cancers. In fact any part of the body
can be affected. Colorectal cancer can be found among
5 most common types of cancer that kill both men and
women. Cancers of major public health relevance such
as breast, cervical and colorectal cancer can be cured if
detected early and treated adequately. Here we focuse on
quite a unique application of the sEMG concerning the
diagnosis of anal sphincter function during the treatment
process of rectal cancer [2, 3].

2 sEMG power spectral density

Any time series xn, n = 1, . . . , N possesses a corre-
sponding frequency spectrum. For a discrete time vari-
able xn one can define a power spectral density (PSD),
which describes the distribution of power of a signal over
frequency. It is given by a truncated Fourier transform of
a signal

PSD = S̃xx(ω) =
(∆t)2

T

∣∣∣∣∣
N∑
n=1

xne
−iωn

∣∣∣∣∣
2

.

The analyzed time series were recorded for 10 seconds
at four stages: before the treatment (D1) and one month
(D2), six months (D3) and one year (D4) after the sur-
gical procedure [4]. The signals were obtained from 16
pairs of the electrodes arranged concentrically at the three
levels (5cm, 3cm, 1cm) of rectal canal depth. The sam-
pling frequency was 2048 Hz.

The detailed description of the PDS calculated by
means of direct Fourier transform and the Welch method
will be presented in details for all stages and for all 16
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Figure 1: Power spectral density of the sEMG signals
acquired from the anal sphincter 1 month after the surgery
D2.

channels at three depths. Fig. 1 presents the PSD and
three fits of the stretched–exponential function S(f) =
A exp[−(f/λ)β ] for the averaged signal from the first 3
channels which corresponds to the first three pairs of the
electrodes 1 month after the surgery. This particular char-
acteristics seem to be the general case for the sEMG sig-
nals acquired from anal sphincter.
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Abstract 

Muscle fatigue is common in everyday life and 
sports. Magnetic stimulation therapy is known to 
be effective for early recovery from muscle fatigue. 
However, the mechanism is still unknown. In order 
to clarify the mechanism of magnetic stimulation 
effect on muscle fatigue, we performed magnetic 
stimulation on the muscle during isometric 
contraction for fourteen normal adult males. The 
load strength of the exercise assumed 30% and 
60% maximum voluntarily contraction MVC. 
Moreover, exercise performance was evaluated 
using an electromyography analysis technique 
under two conditions:  use and non-use of 
magnetism stimulation. No significant difference 
was observed between the two conditions 
regardless of load strength. In a previous study, an 
improvement in exercise performance was 
observed when magnetic stimulation was applied 
to a resting muscle after an exercise with 60% 
MVC. Careful assessment of the physiological 
difference between resting and exercising reveals 
possible differences in energy consumption. In 
order to this difference, it might occur for the 
recovery effect difference by the magnetic 
stimulation. 

Keywords Muscle fatigue, Magnetic stimulation, 

Recovery, Electromyogram 

1 Introduction 

Muscle fatigue is common in everyday life and sports. 

Muscle fatigue is defined as “an inability of the muscle 

to generate force “or “decrease in muscle performance 

"
[1]

. And it is demanded to immediately recover from 

muscle fatigue.

Electromyography (EMG) has been widely used to 

quantitatively evaluate muscle fatigue as a 

physiological index. Because electromyography adds up 

and records action potentials that occur in muscle fiber, 

the state of activity of the whole muscle can be read. In 

addition, measurement may be simple because placing 

an electrode on the skin is the only requirement.

 Electrical stimulation therapy is known to be an 

effective technique for reducing muscle fatigue and 

causes pain and discomfort
 [2][3][4][7]

. Moreover, it is 

difficult to stimulate deep areas of muscle. Therefore, 

we focused on magnetic stimulation therapy, which is 

less invasive than the electrical stimulation technique. 

In a previous study
 [5]

 that applied magnetic stimulation 

with a coil to a muscle resting after exercise with 60% 

maximum voluntarily contraction (MVC), it was 

reported that recovery was promoted. However, the 

mechanism of the recovery process is still unknown. In 

this study, to elucidate the mechanism behind the effect 

of magnetic stimulation on muscle fatigue, we 

performed magnetic stimulation during muscle exercise 

with two types of load strength (30% of MVC, 60% of 

MVC) and examined fatigue reduction. 

2 Methods 

2.1 Subjects 

We enrolled 14 normal adult males (average age 

21.75±0.957 years) and the target muscle was the right 

biceps brachii muscle. All subjects were right-handed. 

Written informed consent was obtained from each 

subjects prior to experiments. The study was approved 

by the local Ethical Committee. 

2.2 Experiment System 

The system that was used for the experiment is shown 

in Fig 1. 

Figure 1: Experiments System Constitution.

A subject sat down on a chair that was constructed for 

this experiment in our labolatry. This experimentation 

system can measure an electromyogram (EMG) and 

also the force that is produced from the subject’s biceps 

brachii during isometric contraction. And a subject can 

receive display muscle strength of his muscle from 

oscilloscope in front.

First, the subject shows three times the MVC value. A 

load strength of this subject was defined using the 

biggest MVC value. After we allowed the subject 
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enough rest, the subject maintained a load that was 

equivalent to 60% of MVC until the muscle was 

fatigued and the subject could not maintain the load. 

Subjects received visual feedback of their muscle 

strength with an oscilloscope in front of them to help 

them adjust muscle strength. Magnetic stimulation was 

administered to the biceps brachii muscle using a 

double coil at every 5 second during this exercise. The 

apparatus used for magnetic stimulation was Magstim 

200 (Magstim Corp., UK) and the stimulation strength 

was at 10% of maximum power (approximately 0.22 T). 

Fig 2 shows a magnetism stimulation device and the 

coil that was used for this stimulation.  

 

 
Figure 2   left:Magstim200, Right: double coile. 

 
In addition, this technique needs to only placed so 

that the center of the stimulation coil was located on the 

motor point of the biceps brachii muscle, and the 

direction of the coil aligned with the upper arm. Whilst 

the subjects exercised and received magnetic 

stimulations, subjects listened to “white noise” to not 

hear anysound for example magnetism stimulation 

device’s one.  
The load equivalent to 30% MVC was tested like the 

60% MVC load. In addition, a one-week interval was 

existed between the application and non-application of 

magnetic stimulation. 
 

2.2 EMG analysis 

EMG was simultaneously recorded with the muscle 

strength display. Skin resistance was lower than 5 kΩ 

and EMG had a band pass filter of 10-490 Hz. The 

EMG was divided into a section every 1.024 seconds 

(defined as 1 segment) and we computed the integral 

calculus EMG (integrated EMG: iEMG) and mean 

power frequency (MPF) of all segments. In addition, to 

obtain MPF, EMG was converted into a frequency 

domain using Fourier transformation. After conversion, 

the following expression (1) was used to calculate the 

MPF of each segment. 

 

𝑴𝑷𝑭 =  
∫ 𝒇∗𝑷(𝒇)𝒅𝒇

𝒙𝟐
𝒙𝟏

∫ 𝑷(𝒇)𝒅𝒇
𝒙𝟐

𝒙𝟏

         (1) 

 
Because the change of the index expresses the 

degree of leaning of the approximately straight line, 
this unit[%/seg] was used.  

MPF is known to become a slow wave with 

accumulation of muscle fatigue in isometric contraction. 

By, as for the factor to shift to a low frequency, Type II 

fiber getting fatigue. From this, it is thought that "a 

firing rate decreasing" or "ignition synchronizes to 

maintain muscular strength"
[1]

. However, iEMG 

increases with the accumulation of muscle fatigue. It is 

thought that a new motor unit is mobilized to 

supplement it, when muscle is getting fatigue and can't 

display required force
 [6]

. An example of the progression 

of typical fatigue observed in this study can be seen in 

Fig 3. 
The change of these indexes between the group that 

received magnetic stimulation and the group that did 

not receive magnetic stimulation was compared. 

 
Figure3 typical progression of muscle fatigue 

3 Results 

3.1 Results of 60%MVC task 

In 60% MVC, Figure 4 compares the endurance time 

between the group that received (defined as “exposure 

group”) and the group that did not receive magnetic 

stimulation (defined as “control group”). Comparison of 

the two indexes was conducted using the t-test with 

correspondence, but a significant difference was not 

observed (p < 0.05).  

Figure 4 endurance time when load is 60%MVC 

 
Similarly, changes in iEMG and MPF were 

compared. The rate of iEMG change in the control 

group was +1.699 %/seg and that in the exposure group 

was +2.342 %/seg. A statistically significant difference 

was not observed between these two indexes (p < 0.05).        
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Similarly, the rate of MPF change of the control group 

was -0.712 %/seg, and that in the exposure, was -

0.758 %/seg. A statistically significant difference was 

also not seen between these two indexes (p < 0.05). 

3.2 Results of 30％MVC task 

Figure 5 compares the endurance time of the control 

group and the exposure group for the 30% MVC 

load.The two endurance times using the t-test with 

correspondence were compared, but a statistically 

significant difference was not observed (p < 0.05). The 

rate of iEMG change in the control group was 

+0.250 %/seg and that in the exposure group was 

+0.898 %/seg. A statistically significant difference was 

not observed between the two indexes (p < 0.05). 

Similarly, the rate of MPF change in the control group 

was -0.700 %/seg, and that in the exposure group, was -

0.825%/seg. A significant difference was not observed 

between the two indexes (p <  0.05).  

 

Figure 5 endurance time when load is 30%MVC 

3.3 Discussion 

No performance gain was observed when magnetic 

stimulation was used in both 60% MVC and 30% MVC. 

In a previous study conducted in our laboratory, the 

subject performed 60% MVC for 30 seconds and was 

allowed 120 seconds of rest. The experimenter 

administered magnetic stimulation to the subject during 

this rest period except 20seconds (first 10seconds of 

rest and last 10seconds of rest). The subject performed 

this exercise and rested repeatedly as one cycle, until 

the muscle was fatigued. Fig 6 shows the time schedule 

used in this previous study.  

The stimulation frequency and the stimulation strength 

of the magnetic stimulation were same condition as in 

our present study (at every 5 second, 10% strength, 

double coil). In this previous study, magnetic 

stimulation and no magnetic stimulation were compared 

by the researchers. During magnetic stimulation, the 

number of cycles that subjects were able to perform was 

significantly increased. The rate of MPF change was 

also significantly improved. Thus, there was an 

improvement in exercise performance. However, there 

was no improvement in exercise performance at our 

experiment. The timing for magnetic stimulation 

differed between this previous study and our present 

study. In the previous study, magnetism stimulation was 

only conducted during the rest period. However, in the 

present study, magnetism stimulation was applied when 

subjects were undergoing contraction.  

Figure 6 time schedule used by the previous 
study 

 

The effects of magnetic stimulation may differ based on 

the difference of physiological phenomenon during rest 

and exercising. 

In addition,  the number of times of magnetic 

stimulation are depended on endurance time. For 

example, the subject who has 100seconds of endurance 

time is given 20 times of magnetic stimulation. 

However the subject who has 50seconds of endurance 

time is given only 10 times of magneticstimulation. 

These factor might change  perfomances.  
 

4 Conclusions  

To elucidate the mechanism of action of magnetic 

stimulation on muscle fatigue, magnetic stimulation 

was administered to exercising biceps brachii muscles 

and an attempt was made to reduce muscle fatigue. 

However, regardless of load strength (30% of MVC, 

60% of MVC), fatigue reduction due to the magnetic 

stimulation was not observed. In a previous study, 

magnetic stimulation was applied during rest using the 

same conditions as this study. In that study, a reduction 

in muscle fatigue was observed. Consequently, it may 

be suggested that the conditions for effective 

magnetism stimulation are different during rest and 

exercise. 
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Abstract

Recent studies have shown that microsaccades,
which are small involuntary shifts in fixation eye
movements, are modulated by the visual attention
system. Microsaccades are generally detected by
thresholding differentiation of eye movement sig-
nals. However, there is no formula to determine ap-
propriate threshold values for precise detection of
microsaccades. In this study, we propose a new mi-
crosaccade detection method based on an order-
statistic time-window analysis with simple differenti-
ation around the center of each window. Since the
time-window which contains a microsaccade shows
a large slope around its median value, the aver-
aged differentiation value of microsaccade periods
is significantly different from the total average. The
results indicate that the proposed method is able
to extract microsaccades of various amplitudes by
setting the α level systematically. Moreover, the
main sequence analyses also suggest that the pro-
posed method detects microsaccades precisely, at
any level of amplitude.

Keywords Fixation eye movements, Microsaccades,
Order-statistic time-window, Main sequence.

1 Introduction

Involuntary miniature ocular movements which occur
when eyes are fixated at a visual target are called “fixa-
tion eye movements.” Fixation eye movements are tradi-
tionally classified in three components: drift, tremor, and
microsaccades[1][2]. Recent studies have shown that mi-
crosaccades are modulated by the visual attention system.
These studies point out that microsaccade rates increase
simultaneously with the shift of focal attention[3][4][5].
On the other hand, some of the studies show that mi-
crosaccade rates and amplitudes are modulated by the
shapes of fixation targets[6].

Since microsaccades are rapid and involuntary fixa-
tion eye movements, the detection methods of microsac-
cades are generally based on thresholding differentiation
of eye movement signals. However, repeated trial and er-
ror by the visual observation is required to determine the
threshold values, because there is no definition of appro-
priate threshold values for precise detection of microsac-

cades. Furthermore, a false detection of small-amplitude
microsaccades would often be drawn by using these con-
ventional methods.

In this study, we proposed a new microsaccades detec-
tion method based on order-statistic time-window analy-
sis with simple differentiation around the center of each
window. We evaluated the efficacy of the proposed
method by applying it to fixation eye movement data.

2 Microsaccade detection algorithm

Fig.1 indicates an example of fixation eye movement
data smoothed by a five-point moving average. Since mi-
crosaccades are ballistic movements, the segment which
contains a microsaccade will monotonically increase or
decrease for tens of milliseconds. Therefore, rank-
ordered time series data of these periods have a relatively
large slope around the median value (Fig.2a). On the
other hand, rank-ordered data which does not contain any
microsaccades shows a gradual increase and they have a
smaller slope around the median value (Fig.2b).
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Figure 1: An example of fixation eye movement data con-
taining six microsaccades.

Fig.3 indicates our proposed algorithm. Fixation eye
movements were measured by EyeLink 1000 (SR Re-
search Ltd.) with a sampling frequency of 2000 Hz. First
of all, raw eye movement data was smoothed by a five-
point moving average to remove high-frequency quanti-
zation noises (Fig.3a).

We defined an order-statistic time-window as f(i; t) =
x(i; t) (i = 1, · · · , 2N + 1) where x(i; t) are order-
statistics of observed data x(t). The differentiation be-
tween pre- and post-N1 points of the median of f(i; t)
was calculated by following Eq.1.
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(a) microsaccade section
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Figure 2: Fixation eye movement and its rank-ordered
data. (a) The time period which contains a microsac-
cade shows a large slope around its median value. (b)
The rank-ordered data of drift period does not have such
a slope.

Δx(t) = x2(t)− x1(t),

where, x1(t) = f(N + 1−N1; t),

x2(t) = f(N + 1 +N1; t)

(1)

A large value of Δx(t) means a microsaccade-like
rapid shift was contained in the window (Fig.3b)).

A set of Δx(t):ΔM = {Δx(t)} was obtained as much
as possible from measured fixation eye movements avoid-
ing the periods with eye blinks (Fig.3c). Then we ob-
tained ΔN1(t) = {Δx(tj)} from 2N1-point windows,
where tj = t + j (j = −N1, ...,−1, 0, 1, .., N1). The
differences between averaged ΔM (ΔM ) and ΔN1(t)
(ΔN1(t)) were tested by two-sample Student’s t-test.
When the average values were significantly different at
certain α level, it was judged that there might be a mi-
crosaccade in the closed interval [t−N1, t+N1] (Fig.3d).
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Figure 3: Procedure flow of the proposed algorithm.

3 Results

Fig.4 shows examples of horizontal fixation eye move-
ments with detected microsaccades by the proposed
method. Each vertical color bar indicates the period in
which ΔM and ΔN1(t) were significantly different at
certain α level. In this figure, color bars show 1 − α
values, the reason of which will be described later. The
α level was systematically changed from 0.01 to 0.4.
The sizes of the moving-windows were determined as
N = 80 and N1 = 10 to detect microsaccade as pre-
cisely as possible.

The proposed method is able to detect microsaccades
of various amplitudes by setting theα level as indicated in
Fig.4a. The duration of each colored period corresponds
to the duration of each microsaccade. This indicates that
the proposed method is also applicable to determine start-
and-end-point of a microsaccade.

The segment which has the position shift of larger am-
plitude and longer duration indicates that it is a very typ-
ical microsaccade. Since this property of microsaccades
corresponds to the value of (1 − α), we applied it as an
index of “potential microsaccades.”
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Figure 4: Examples of horizontal fixation eye movements
with detected microsaccades by proposed method. The
α level was systematically changed from 0.01 to 0.4.
(a) Microsaccades of various sizes of were detected by
changing the value of α level. (b) The proposed method
does not detect spiny movements.
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Table 1 indicates the detection rates and the number of
false detection of microsaccades of each (1 − α) value.
The detection rate was defined by a ratio of the total num-
ber of detected microsaccades to the gold-standard of mi-
crosaccades. The gold-standard of microsaccades was
determined by three referees who are currently working
on eye movement studies.

Sometimes the referees judged spiny movements
shown in Fig.4b as microsaccades. However, these spiny
movements do not show positional shift which is a prop-
erty of an ordinary microsaccade, indicating that it is
doubtful whether they are microsaccades. Fig.5 show the
enlarged version of the horizontal component and verti-
cal component of a spiny motion. As it is thought that
these spiny motions were the crosstalks of vertical mi-
crosaccades, we decided not to regard the spiny motions
as microsaccades. The number of spiny motions is only
seven, and the total number of gold-standard microsac-
cades without spiny motions is 134.

As indicated by Table 1, the detection rate becomes
higher and the number of false detections increases when
potential microsaccade becomes lower. We could not
compare with conventional methods, because detected
microsaccades would change according to the threshold
value by these methods.

Table 1: Detection rate and the number of false detec-
tion of microsaccades. When potential microsaccade be-
comes lower, the detection rate becomes higher, but the
number of false detections increases.

Potential MS Correct detection False detection
60% 126 (94.0%) 8
70% 123 (91.8%) 6
80% 120 (89.6%) 6
90% 115 (85.8%) 6
95% 112 (83.6%) 5
99% 105 (78.4%) 5

3.1 Evaluation experiment

We carried out an experiment to evaluate the effective-
ness of the proposed method. Fig.6a shows the exper-
imental procedure. It has been shown that the shapes
of fixation target affect frequencies or amplitudes of
microsaccades[6]. We used seven targets, which are com-
posed of a dot, a circle, and a cross, according to Thaler
et al.’s experimental procedure (Fig.6b). The viewing an-
gle of the dot was 0.4[deg], and the sizes of the cross
and the circle were both defined as 3.0[deg]. The experi-
ments were carried out in a simple dark room in order to
avoid the influence of indoor lighting devices. The sub-
jects were instructed to maintain fixation on the center
of a target, which was selected at random, during a trial.
Stimuli were controlled by using Psychtoolbox on Mat-
lab. The subjects were two college students (a male and
a female) in their twenties.

We calculated the main sequence of microsaccades,
which refers to the relation between the microsaccade’s
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Figure 5: Horizontal and vertical components of a spiny
motion. These spiny motions were regarded as the
crosstalks of vertical microsaccades.
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Figure 6: Overview of the evaluation experiment. (a) Ex-
perimental protocol. Subjects were instructed to maintain
fixation on the center of the targets. (b) Visual targets
used in the experiment. The size of the dot was 0.4[deg],
and the sizes of cross and circle were 3.0[deg].

peak-velocity and amplitude, to evaluate detection pre-
cision of small-amplitude microsaccades, and also con-
firmed whether dynamics of microsaccades were affected
by target patterns. The value of potential microsaccade
90% was used to determine the start-and-end-point of
each microsaccade (Fig.7). The detection precision of
microsaccades at this value was more than 80%. Peak-
velocity of a microsaccade was determined from the low-
pass differentiation signal of the microsaccade period.
The low-pass differentiation is defined as following Eq.2.
Where SR is the sampling rate SR = 2000, and N = 15
is the window size.

xvel(t) =
SR

N(N + 1)

N∑

n=1

{x(t+ n)− x(t − n)} (2)

Fig.8 shows the main sequence curves fitted to the scat-
ter plots of peak-velocity versus amplitude of microsac-
cades. Since the relation between peak velocity and am-
plitude of saccades can be characterized by non-linear
function, the regression function Eq.3 was fitted to the
scatter plots [7].
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Figure 7: Detected microsaccade periods. The start-and-
end-point of a microsaccade systematically change as a
function of 1− α value.

PV = PVC(1− exp(−A/AC)) (3)

where PV is the peak velocity of microsaccades, A is the
amplitude of microsaccade. PVC and AC are constant
values.

Fig.8 shows that peak velocity and amplitude property
of microsaccades is well-fit by regression function, even
for tiny amplitude microsaccades. This indicates that
the proposed method can detect microsaccades of vari-
ous amplitude with high accuracy. Even though a target
shape which is composed of the dot and the cross resulted
in combined low dispersion and microsaccade rate[6], we
found that the difference of fixation target pattern has no
effect on the dynamics of microsaccades.
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Figure 8: Peak velocity versus amplitude of detected mi-
crosaccades (“main squence”) for each subject. The pro-
posed method is able to detect microsaccades precisely,
even tiny amplitude microsaccades.

4 Conclusions

In this study, we proposed a detection method of
microsaccades based on an order-statistic time-window
analysis with simple differentiation around the center of
each window. Since the segment which contains a mi-
crosaccade shows a large slope around its median value,
while the drift-only period does not have such a slope,
the averaged differentiation values of microsaccade pe-
riods in most cases were significantly different from the
total average. As a result, the proposed method is able to
detect microsaccades of various amplitudes by setting the
α level systematically. Moreover, the value of 1 − α was
shown to become the index of “potential microsaccades.”
By comparison between the detected microsaccades and
the gold-standard of microsaccades, it was shown that the
detection rate becomes higher and the number of false de-
tections increases when the potential microsaccade index
1 − α becomes lower. Furthermore, we carried out an
experiment to evaluate the effectiveness of the proposed
method. The subjects were instructed to maintain fixa-
tion on one of the seven target patterns. Furthermore, the
results of the main sequence analyses indicate that the
proposed method detects microsaccades precisely, at any
level of amplitude.
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Abstract 

It is well known that there is intercommunication 
among the different areas of the brain. However, 
the rules of communication in the brain have not 
been successfully revealed. In this paper, we 
carried out neural network simulation in 25×25 2D 
array to analyze behavior of spikes. We 
considered that the change in the propagation 
path of the firing of neurons needs a little variance 
of the synaptic propagation delay and refractory 
period.  

Keywords Dynamic Time Warping, Refractory Period, 

Spike Wave, Synaptic Delay 

1 Introduction 

The brain forms a huge network, and information is 

transmitted by spikes. The action potential is 

transmitted to the behind neurons from the previous 

neuron with delay. Until the potential change occurs, it 

takes more time than 0.5 msec. This is referred to as 

"synaptic propagation delay"[1]. When neuron fires 

once, it can't fire for a certain time. This is referred to as 

"refractory period"[2]. Each neuron has variances of the 

synaptic propagation delay and refractory period. They 

fluctuate time to time and can be regarded as a kind of 

noise. Intellectual brain activity such as memory 

processing could be conducted with spike propagation. 

However, information processing in brain is rather 

stable in spite of such variabilities. It is an important 

target to analyze the spike propagation and information 

transmission mechanism. To essentially understand 

information processing in the brain, we simulated 

assuming the interaction of the firing activity of a large 

number of neural network [3]. In this paper, we 

simulated the spike responses for stimulations under 

various synaptic propagation delays and refractory 

periods. From a view point of communication, we 

analyze information-flow of the network.  

2 Methods 

Twenty-five × twenty-five 2D neural network was 

implemented (Figure 1). We used integrate-and-fire 

model without leak as a neuron model [4, 5]. Each 

neuron had connection weights to and from eight 

neighboring neurons.  

Three neurons were stimulated simultaneously at time 

0.1 msec as shown in Figure 1. We defined such three 

neurons “neuron group.” Spike-waves propagated from 

the stimulated neuron group to the other neuron groups, 

which we defined “transmitting neuron group.” 

Instantaneous variances of synaptic propagation delay 

and the refractory period were set to between 0.000 and 

2.000. In our previous wet-lab experiments, we applied 

time sampling rate of 0.1 msec, which was called as 

“bin.” So, we also use time unit of “bin = 0.1 msec.” 

Bin
2
 were set in 0.167, 0.333, 0.500, 0.667, 1.000 and 

2.000 (bin = 0.1 msec) [4].  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625

Figure 1：25×25 2D neural network and the 

stimulation neuron groups. 

Group number 1: blue 

Group number 2: green 

We obtained the spike-interval sequences for 625 

cells (total 6250 sequences) as stimulation group 

number 1 (Figure 2).  

Figure 2：the n-th (n = 1, 2, ..., 625) spike interval of 

the neuron 
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We also obtained the spike-interval sequences for 625 

cells (total 6250 sequences) with stimulation group 

number 2. And we conducted “ Dynamic Time 

Warping：DTW” in combination of 10 trials (total 45 

sets) to calculate the spike-interval time differences 

between the trial sets of stimulation group number 1 

(figure 3). We also conducted DTW in combination of 

10 trials (total 45 sets) to calculate the spike-interval 

time differences between the trial sets of stimulation 

group number 2.  

DTW is an algorithm for measuring the degree of 

difference between the two signals sequences having 

different time or fast. When the degree of difference is 

higher, the value approaches 1 while the value 

approaches 0 when the degree of difference is lower.  

We measured DTW values in combination of 10 trials 

with same stimulated groups（1 or 2）and calculate the 

average of such 90 sets（= 45 × 2 sets）. We define 

such calculations “Local DTW” (See Figure 3). 

 

 
Figure 3：Illustration of Local DTW distance. 

 

We calculated DTW in combination of both 

stimulation group number 1 and 2’s 10 trials (total 100 

sets) to calculate the spike-interval time differences 

between the trial sets (Figure 4). We calculated the 

average of 100sets. We define such calculations “Inter 

DTW.”   

 

 
Figure 4：Illustration of Inter DTW distance. 

 

We applied T-test between “Local DTW” and “Inter 

DTW.” We counted the number of such neurons whose 

“Inter DTW” was significantly higher than “Local 

DTW.” We calculated the t-test of the both-sided at the 

5% significance level between “Local DTW” and “Inter 

DTW.” We thought that neurons with significantly 

higher test statistic were able to identify the stimulation 

group number 1 and 2.  

3 Results 

3.1 Difference of propagation speed 

Figure 5 shows the two results of positions of the 

firing neurons from the different variances. The 

variances of the synaptic delay and refractory period 

were 0.167 (yellow in Figure 5) and 2.000 (red in 

Figure 5). Blue in Figure 2 shows the results from both 

0.167 and 2.000 variances. Figure 5 shows the scene 

when 5.6 - 6.0 msec has passed after the stimulation. 

We could see that the propagation speed with 2.000 

variance value (red) is faster than the propagation speed 

with 0.167 variance value (yellow). As a result, when 

changing the fluctuation of the synaptic delay and 

refractory period, the larger the variance value is, the 

faster the propagation speed is.  

 

 
Figure 5: When stimulated the group 1, comparison 

between variances 0.167 and 2.000. 

Red: variance 2.000 

Yellow: variance 0.167 

Blue: variances 2.000 and 0.167 

3.2 Classification of stimulated sites 

Figure 6 shows the number of the firing neurons 

which caused the different firing time calculated by 

DTW. A vertical line shows the number of neurons. A 

horizontal line shows bin
2
 for the variances of the 

synaptic delay and refractory period. When the variance 

value of the synaptic delay and refractory period from 

increased 0.167 to 0.667, the number of the firing 

neurons which caused the different firing time increased. 

However, when the variance is more than 0.667, the 

number of neurons that could identify the stimulated 

neurons decreased.  
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Figure 6: The number of neurons which could 

communicate. 

4 Dictation and Consideration 

The results showed that the propagation path and the 

propagation velocity changed by putting the variance of 

synaptic propagation delay and refractory period. The 

reason may be that the larger the variances of the 

synaptic delay and the refractory period, the more 

quickly the spike propagated. As a result, the stimulus 

arrives early. From the results of DTW, there are many 

signaling pathways spatially different from transmitting 

neuron groups to receiving neuron. They are transmitted 

in parallel.  

However, a spike which has reached to a neuron first, 

makes the neuron firing. We can see the approximate 

flow of information if we discuss only spatially 

representative pathway. At that time, when there is no 

variation in the synaptic propagation delay and 

refractory period, it will always pass through the same 

typical route in each trial. At that time, the route to each 

transmission neuron from the receiving neuron might 

overlap from half-way. In that case, receiving-neuron 

will be hard to identify information from transmission 

neurons. If there is instantaneous variation in the 

synaptic propagation delay and refractory period, it is 

considered to be passing through the temporally various 

representative routes. In general, two paths from two 

transmitting neurons to a receiving neuron would exist, 

the variances of the synaptic delay and refractory period 

could be large [5]. Thus, if there would be variations in 

the synaptic propagation delay and refractory period, 

spike-wave could pass through the various 

representative routes. Then, it increases the possibility 

of the identification. When the variance is too large 

with large bin
2
, the firing neuron could receive noise. 

Then identification of spike wave itself could be 

difficult. We considered that the change in the 

propagation path of the firing of neurons needs a little 

variance of the synaptic propagation delay and 

refractory period.  
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Abstract 

Sleep disorders are found to be more prevalent than previously realized. This may be a consequence of a 
modern society which optimizes work and social activities up to the edge. In order to investigate normal and 
disturbed sleep, we record biosignals both in the sleep laboratory and at home. Signals may be recorded 
directly, such as EEG, EOG, EMG from the head of the sleeping person, or indirectly, such as ECG, heart 
rate, respiration, pulse wave. Signals may be recorded with little contact or no contact systems such as 
actigraphy, body movement, bed sensors or bedside radiofrequency sensors. Some signals are new in sleep 
research and require new technology and analysis concepts. Always biosignals were recorded with an 
appropriate time and amplitude resolution, and then we derive physiological functions. We can identify 
wakefulness and sleep, we can derive details about sleep, such as light sleep, deep sleep, and REM sleep, 
arousals and sleep fragmentation. Not only classical methods in the time and frequency domain are used, 
but also more recent methods using statistical approaches are applied. This allows recognizing normal and 
restorative sleep and identifying sleep disorders as well. Some sleep disorders imply cardiovascular 
consequences and require treatment. Sleep disordered breathing is the disorder with most cardiovascular 
consequences. Many diagnostic tools focus on this group of disorders [1]. Diagnostic methods and 
perspectives are presented in this communication.  

[1] IEEE Engineering in Biology and Medicine Society: ``The Science of Sleep". Pulse Magazine. Sept./Oct.
issue 2014.
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Rhythm: A Simulation Study

Akifumi Kishi, Ikuhiro Yamaguchi, Fumiharu Togo, Yoshiharu Yamamoto

Educational Physiology Laboratory, Graduate School of Education, The University of Tokyo, Japan

Abstract

The cyclic sequence of non-rapid eye movement
(NREM) and REM sleep, or the so-called ultradian
rhythm of sleep, is a highly characteristic feature of
sleep. Although over a half a century has passed
since the discovery of REM sleep, surprisingly, the
mechanism responsible for the ultradian REM sleep
rhythm has not to date been fully elucidated. In the
present study, we aim to provide a mechanistic in-
sight into the generation of the ultradian REM sleep
rhythm. By simulating hypnograms with dynamic
feature of sleep stage transitions, i.e., stage tran-
sition probabilities and stage-specific survival time
functions, we show that the second-order Markov
transition probabilities and the stage-specific sur-
vival time functions can reproduce the central po-
sition (∼90 min) of the REM-onset intervals (ROI),
but with larger variance of the distribution. We also
demonstrate the direct effect of increased proba-
bility of transitions from light to deep sleep within
NREM sleep on the prolongation of the ROI in a
dose-response manner. These results suggest that
dynamic sleep stage transitions constitute the basis
of the formation of ultradian rhythm of sleep, yet fur-
ther elaboration of the model would be required to
reduce the variability of the rhythmicity.

Keywords Markov Chain Modeling, Sleep Stage
Transitions, Survival Time Function, Ultradian Rhythm

1 Introduction

Sleep is, by nature, not a static but a dynamic phe-
nomenon, resulting from complex interactions of the be-
havior of central neurons, mainly in the hypothalamus
and brainstem [1, 2]. Above all, the cyclic sequence of
non-rapid eye movement (NREM) and REM sleep, or
the so-called ultradian rhythm, is a highly characteristic
feature of sleep [3]. While there exists the well-known
reciprocal interaction model describing ultradian period-
icity, in which NREM–REM cycles are controlled by
both cholinergic and monoaminergic neuronal systems
[2, 4], the mechanism generating the ultradian REM sleep
rhythm, particularly in humans, has not to date been fully
elucidated.

Recently, analysis of dynamic aspects of sleep, prob-
abilities of sequential transitions of sleep stages (wake

[W], stage 1 [S1], stage 2 [S2], slow-wave sleep [SS] and
REM [R]) and statistical distributions of duration of each
stage, has been shown to be useful since it can shed light
on new properties of sleep regulation [5, 6]. A recent
study has shown that the second-order or higher Markov
chain model contains valuable information compared to
the simple first-degree Markov transitions, and thus the
second-order Markov chain model might be suitable for
sleep stage transition analysis [7]. We have shown that
the probability of transitions from S2 to SS was increased
when the REM-onset intervals (ROI) was prolonged by
administrating monoaminergic antagonist in humans [8].

In the present study, we hypothesized that the stage
transition mechanism underlies the generation of the ul-
tradian REM sleep rhythm. Specifically, we ran simula-
tions to see if minimal rules of stage transition dynam-
ics could reproduce which aspects of ultradian rhythm
of sleep. To this end, first, we re-analyze the available
data of human sleep hypnograms [9] to extract param-
eters characterizing the dynamic aspects of sleep, i.e.,
the first-order and the second-order transition probabil-
ities between sleep stages and the equations of the sur-
vival time function of the continuous runs for each sleep
stage. Second, we model sleep stage dynamics and run
simulations to generate hypothetical human hypnograms.
We show that the second-order Markov transition proba-
bilities and the stage-specific survival time functions can
reproduce the central position (approximately 90 min) of
the ROI. We also demonstrate by simulation that the in-
creased probability of transitions from S2 to SS leads to
the prolongation of the ultradian REM sleep rhythm.

2 Methods

2.1 Dataset

The subjects were 26 healthy women (age: 38 ± 8
years; mean ± SD) [9]. None of these subjects had clin-
ically evident sleep disorders nor major depressive dis-
order. To reduce variability, menstruating subjects were
all studied in the follicular phase of their menstrual cy-
cles. All the subjects gave their informed consent, ap-
proved by the New Jersey Medical School’s Institutional
Review Board, to participate in this research. Following
instructions to refrain from alcohol and caffeine inges-
tion and avoid engaging in prolonged and/or strenuous
exercise in the daytime before study nights, the subjects
underwent one night of polysomnographic recording in a
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quiet, shaded hospital room. The subjects went to bed at
their usual bedtime and awoke the next morning between
7:15 and 8:00 A.M.

The subjects underwent full nocturnal polysomnogra-
phy consisting of electroencephalogram (C3/A2, O1/A2
and FZ/A2), electrooculogram, submental electromyo-
gram (EMG), anterior tibialis EMG, a lead II electrocar-
diogram, thoracic and abdominal motion, airflow using a
nasal cannula/pressure transducer and an oral thermistor,
and pulse oximetry. Sleep was scored every 30 sec by a
single scorer according to standard criteria of Rechtschaf-
fen and Kales [10]. To approximate the modified Ameri-
can Academy of Sleep Medicine standard guidelines for
sleep stage scoring [11], stages 3 and 4 were combined
into SS. More details of the polysomnographic record-
ings, including the scoring of the arousals and respiratory
events, have been described elsewhere [9].

2.2 Data Analysis

According to the definition of the first-order Markov
chain process, the first-order transition probabilities were
calculated as PrX→Y = (nX→Y /

∑
A nX→A) × 100,

where {A, X, Y} are derived from {W, R, S1, S2 and
SS} and nX→Y is the number of transitions from sleep
stages X to Y (X ̸= Y) during the whole night’s sleep.
The second-order transition probabilities were calculated
as PrX→Y→Z = (nX→Y→Z/

∑
A nX→Y→A) × 100,

where {A, X, Y, Z} are derived from {W, R, S1, S2 and
SS} and nX→Y→Z is the number of transitions from
sleep stages X to Y to Z (X ̸= Y and Y ̸= Z) during the
whole night’s sleep. Mean ± SD of the number of contin-
uous runs of each sleep stage (i.e., periods of consecutive
epochs of the same stage bounded by one of the other
stages) analyzed per subject for this healthy group have
been presented elsewhere [9]. Mean ± SD of the total
number of continuous runs for all stages during whole
night’s sleep were 147.7 ± 41.8.

As we have previously reported [6, 9], survival time
function (as well as duration distributions of continuous
runs) takes a different form for each sleep stage: sur-
vival time function P (t) of continuous runs (duration t)
for S1 and REM sleep follow an exponential function
exp(−t/τ), where the τ is a constant, P (t) for S2 sleep
follow a stretched exponential function exp(−t/τ)β ,
where the β and the τ are constants, and P (t) for wake
and SS follow a power-law At−α, where the α and the A
are constants. The survival curves for durations of contin-
uous runs for each sleep stage were generated by pooling
those of all the individuals. The constant parameters were
estimated by the least squares fitting technique.

The intervals between the onset of one REM period
and the beginning of the next (REM-onset intervals; ROI)
were calculated according to criteria derived from Fein-
berg [12]. In keeping with these criteria, a REM period
was accepted as complete if it was ≥5 min in duration
(except for the first REM period, which has no mini-
mum length). REM periods of duration <5 min were
conjoined with the succeeding REM period. REM pe-
riods interrupted by NREM sleep ≤15 min were treated

S2→ W S1 SS R
Normal 23.5 30.0 36.7 9.7
Moderate 13.5 20.0 56.7 9.7
Substantial 3.5 10.0 76.7 9.7

Table 1: Probability parameters for the first-order simu-
lation.

W→S2→ W S1 SS R
Normal 42.5 35.8 17.3 4.5
Moderate 32.5 25.8 37.3 4.5
Substantial 22.5 15.8 57.3 4.5
S1→S2→ W S1 SS R
Normal 28.6 45.2 13.9 12.3
Moderate 18.6 35.2 33.9 12.3
Substantial 8.6 25.2 53.9 12.3

Table 2: Probability parameters for the second-order sim-
ulation.

as single periods; if >15 min of NREM sleep intervened,
they were scored as two separate REM periods. For the
treatment of the waking time, we subtracted the waking
time when calculating the intervals, because a previous
study has shown that the REM sleep cycle is sleep depen-
dent [13]. Distributions of ROI were analyzed by pooling
those of all of the individuals or the simulations.

2.3 Simulation

Simulated hypnograms were generated by the follow-
ing 2 steps: 1) determining a stage sequence based on the
transition probabilities and 2) determining the stage run
durations based on the survival time functions for each
sleep stage. Uniform random numbers (ranging from 1 to
10,000) were generated and the first number was used to
determine the destination of transitions and durations of
the stage runs. For the first step, the number of sequence
(runs) was set to 150 based on the actual data, and either
the first-order or the second-order transition probabilities
was used in each simulation.

In addition, based on our previous experimental obser-
vation [8], direct effect of increased probability of transi-
tions from S2 to SS on ROI was examined on the simula-
tion. To investigate the dose-response relationship, prob-
ability parameters (“moderate” and “substantial” increase
of S2 to SS transition probability) were set as shown in
Table 1 for the first-order simulations and Table 2 for the
second-order simulations. The moderate increase of S2
to SS transition probability corresponds to the actual in-
crease by the monoaminergic antagonist [8]. None of the
probabilities of transitions related to REM were altered
since it might affect the ROI directly.

Simulation was repeated 1,000 times for each pattern
of simulations and all of the 1,000 simulated hypnograms
were used to estimate the distribution of the ROI.
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from W from S1 from S2
(%) W S1 S2 SS R (%) W S1 S2 SS R (%) W S1 S2 SS R

S1→W 94.9 5.1 0.0 0.0 S2→W 88.0 11.5 0.0 0.5
W→S1 25.0 70.1 0.0 5.0 S2→S1 9.0 87.3 0.0 3.7
W→S2 42.5 35.8 17.3 4.5 S1→S2 28.6 45.2 13.9 12.3
W→SS 0.0 0.0 0.0 0.0 S1→SS 0.0 0.0 0.0 0.0 S2→SS 3.1 0.6 96.2 0.0
W→R 20.0 65.9 14.1 0.0 S1→R 20.2 74.6 5.2 0.0 S2→R 21.5 61.1 17.4 0.0

from SS from R
(%) W S1 S2 SS R (%) W S1 S2 SS R
SS→W 50.5 49.5 0.0 0.0 R→W 85.9 2.7 0.0 11.4
SS→S1 0.0 100.0 0.0 0.0 R→S1 8.4 15.5 0.0 76.1
SS→S2 11.6 6.7 77.8 4.0 R→S2 33.2 13.0 5.5 48.3

R→SS 0.0 0.0 0.0 0.0
SS→R 0.0 0.0 0.0 0.0

Table 3: Second-order transition probabilities between sleep stages in healthy subjects.
The labels in the rows denote the two preceding stages, and those in the columns denote the subsequent stages of transitions.
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Figure 1: A typical example of the hypnograms.
(A) Actual hypnogram of a healthy subject, (B) simulated

hypnogram using the first-order transitions and (C) simulated
hypnogram using the second-order transitions.

3 Results

3.1 Experimental Results

A typical example of the hypnogram of a healthy sub-
ject was shown in Fig.1A.

The first-order transition probabilities between sleep
stages in our sample of healthy subjects have been re-
ported elsewhere [9]. The second-order transition proba-
bilities between sleep stages were shown in Table 3.

The survival time distributions (i.e., cumulative prob-
ability distributions) of continuous runs for each sleep
stage of our sample of healthy subjects have been pre-
sented elsewhere [9]. The parameters for the survival
time functions of continuous runs for each sleep stage
were now estimated by the least squares fitting technique
and summarized in Table 4.

The distribution of the ROI for our sample of the
healthy subjects was shown in Table 5. The median ROI
was 89.5 min (73.9 min and 103.8 min; the first and the
third quartiles, respectively) for the healthy controls.

Stage Fitted Model Parameters
wake power-law α = 1.05, A = 0.46
S1 exponential τ = 0.92
S2 stretched exponential β = 0.78, τ = 4.6
SS power-law α = 1.35, A = 0.38
REM exponential τ = 6.40

Table 4: Parameters for the survival time function of con-
tinuous runs for each sleep stage.

3.2 Simulation Results

Typical examples of the hypnograms generated by the
normal first-order and the normal second-order simula-
tions were shown in Fig.1B and C, respectively.

Reliable estimations of the quartile statistics of the ROI
distribution for the hypnograms generated by the normal
first-order and the normal second-order simulations were
summarized in Table 5. The median ROI estimated by the
normal second-order simulation was 89.0 min, which was
almost same as that of the actual hypnograms (89.5 min).
On the other hand, the median ROI estimated by the nor-
mal first-order simulation was 67.0 min, which was about
20 min shorter than that of the actual hypnograms. In-
terquartile range (IQR) of the ROI estimated by the nor-
mal first-order and the normal second-order simulations
were relatively larger (27.0 min for the normal first-order
and 38.7 min for the normal second-order simulations)
than that of the actual hypnograms (14.9 min).

The median ROI estimated by the second-order simu-
lation with moderately and substantially increased S2-to-
SS transition probability was prolonged to 98.0 min and
108.5 min, respectively, compared to that of the normal
second-order simulation (89.0 min). The median ROI es-
timated by the first-order simulation with moderately and
substantially increased S2-to-SS was also prolonged to
73.0 min and 79.0 min, respectively, compared to that of
the normal first-order simulation (67.0 min). For any of
these cases, estimated IQRs were larger than the simula-
tion with normal transition probabilities.
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ROI 25% Median 75% IQR
Actual data
Healthy subjects 73.9 89.5 103.8 14.9
Simulation with normal transition probability
First-order 45.0 67.0 99.0 27.0
Second-order 57.1 89.0 134.5 38.7
Simulation with moderately increased S2-to-SS
First-order 47.5 73.0 111.5 32.0
Second-order 61.0 98.0 154.0 46.5
Simulation with substantially increased S2-to-SS
First-order 51.5 79.0 124.5 36.5
Second-order 65.0 108.5 163.6 49.3

Table 5: Quartiles and interquartile range (IQR) of the
REM-onset intervals (ROI) for the actual data and the
simulated hypnograms.

4 Conclusions

We demonstrated that simulated hypnograms gener-
ated by 1) second-order Markov transition probabilities
between stages and 2) stage-specific survival time func-
tions of stage runs durations could reproduce the central
position of the distribution of the ROI, while the width of
the distribution (i.e., variance or IQR) was greater com-
pared to the actual distribution. We have also shown
the direct effect of increased probability of transitions
from S2 to SS on the prolongation of the ROI in a dose-
response manner. These findings suggest that the mecha-
nism governing sleep stage transitions underlies the gen-
eration of the ultradian rhythm of sleep. Further elabo-
ration of the model, such as incorporation of the home-
ostatic regulation of slow-wave sleep as well as the cir-
cadian regulation of REM sleep [14], could greatly re-
duce the variability without altering the 90 min ultradian
rhythm.
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Abstract 

The thalamus has been recognized to play an 
important role in sleep. Although the direct 
detection of functional changes of the thalamus is 
not possible using scalp electroencephalogram 
(EEG), some inferences may be possible by this 
method because functional change of the 
thalamus is thought to affect EEG signals and 
these effects can be mathematically modelled by 
the thalamocortical model (TC model). In this 
paper, we propose a novel method to estimate the 
Cortico-Thalamo-Cortical (CTC) loop strength. By 
identifying the transfer function of the 
Autoregressive (AR) model with the transfer 
function of the TC model, we derived a direct 
expression of CTC loop strength using AR 
coefficients. Sleep-EEG data analysis using this 
method clearly tracked the wake-sleep transition; 
consistent with previous studies, the estimated 
cortico-thalamo-cortical loop strength decreases to 
almost zero during the wake-sleep transition. 
Furthermore, we propose a stochastic process 
model for Waking during Nocturnal Sleep (WS) 
based on this method. The model simulates the 
experimental observation well, suggesting 
usefulness and validity of the method from the 
perspective of CTC loop.  

Keywords Autoregressive Model, Cortico-Thalamo-

Cortical Loop, Electroenchephalogram, Transfer 
Function, Wake-Sleep Transition 

1 Introduction 

The thalamus has been recognized to play an 

important role in sleep onset [1, 2]. Although the direct 

detection of functional changes of the thalamus is not 

possible using scalp EEG (electroencephalogram), some 

inferences may be possible by this method because 

functional change of the thalamus is thought to affect 

EEG signals and these effects can be mathematically 

modelled by the thalamocortical model (TC model) [3, 

4]. While some studies have shown the validity and 

effectiveness of TC models [3-6], further technical 

investigation is needed towards practical and clinical 

applications. One issue which needs to be dealt with is 

time resolution. In most cases, a power spectrum is used 

for model-fitting [5, 6] but this process causes time 

resolution deterioration because long-time data are 

required to extract reliable power spectrums from noisy 

(stochastic) EEG data. A second issue is the so-called 

“local minimum” or non-uniqueness in the fitting 

(optimizing) procedure, arising from having a large 

number of fitting parameters and nonlinear 

contributions of parameters to the power spectrum. 

 In this paper, we propose a novel method to deal 

with the abovementioned issues. The basic idea is 

parallel use of an auto-regressive (AR) model with the 

TC model in data processing. The AR model is a 

“stochastic” model that shortens the time to extract 

power spectrums and is also a “linear” model that is 

free from the local-minimum problem. By identifying 

the transfer function of the AR model with the transfer 

function of the TC model, we derived a direct 

expression of CTC loop strength using AR coefficients. 

Sleep-EEG data analysis using this method clearly 

tracked the wake-sleep transition; the estimated CTC 

loop strength (c2) decreases to almost zero during the 

wake-sleep transition as is consistent with previous 

studies [1-3]. 

We also found that the c2 –distribution during 

nocturnal sleep exhibits a clear bimodal nature, which 

can be well approximated by superposition of two 

Gaussian distributions corresponding to sleep (Non-

REM 1-4 and REM) and wake states, respectively. We 

show that this finding naturally leads a stochastic 

process model of waking during nocturnal sleep (WS) 

and that the model simulates the experimental 

observation well. We believe that the method from the 

perspective of CTC loop provides new insight into 

Wake-Sleep Transition.  

2 Methods 

2.1   Analytical Method to Estimate 

Cortico-Thalamo-Cortical Loop Strength 

We use the compact model proposed by Kim and 

Robinson [4, 5]. The frequency transfer function of the 

model is derived as  

                                                                           .      (1) 

Here c2 denotes cortico-thalamo-cortical (CTC) loop 
strength which is focused on in this study. t0 denotes 
loop delay. c1 and te are related to cortical activity. 

To extract c2 from EEG data with the least 
interference of the other parameters, we deform (1) to 
the next equation. 

)sin2()cos( 02021

221 tctjtcctH ee  
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 (2) 

 

On the other hand, we are also able to derive the 

frequency transfer function with the help of Auto 

Regressive (AR) model as 

 

.                        (3) 

 
Replacing HAR with H in (2) derives the next equation 

giving a direct estimation of c2 from AR coefficients as 

 

                                                                                  (4) 

 

 

So if t0 is known, we can extract c2 from EEG data.  

We adopt two ways for t0 treatment; assuming a 

nominal constant value (t0 = 80msec) [3, 4], and 

“variable t0” (computing c2 - t0 curve). The constant 

assumption makes the analysis simple and is suited to 

the first step to further analysis. Using a variable t0 is 

somewhat complicated and time-consuming, but 

expected to extract richer information from EEG. 

We can draw a theoretical c2 - t0 curve using (1) and 

(2). Assuming t0= t0 (forward) in (1) and t0 = t0(inverse) 

in (2), the ratio r = c2 (inverse simulated) / c2 (used in 

forward simulation) can be obtained as 

 

                               (5) 

 

Here, y= t0 (forward) / t0 (inverse). Fig.1 shows the t0 - r 

curve obtained by (5), assuming t0=90ms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Theoretical r - t0 curve. 

2.2 Data Acquisition 

To evaluate the validity of the theory described 

above and elucidate the dynamical change of c2 during 

nocturnal sleep, a dataset used in previous work [7] (but 

only from healthy subjects) was analyzed. The subjects, 

26 healthy women (age: 38 ± 8 years; mean ± SD) 

underwent full nocturnal polysomnography. 

Measurements included  EEG (electrode C3/A2, 

sampling period Ts =1/128Hz), electrooculogram, 

submental electromyogram, anterior tibialis 

electromyography, a lead II electrocardiogram, thoracic 

and abdominal motion, airflow using a nasal 

cannula/pressure transducer and an oral thermistor, and 

pulse oximetry. Sleep was scored every 30 seconds by a 

single scorer according to standard criteria of 

Rechtschaffen and Kales. See [7] for more details. 

3 Results 

3.1 Wake to Sleep Transition 

Fig.2 shows an example for one subject of c2 time 

series during the Wake-Sleep transition estimated by (4) 

every 15 seconds, with sleep stage time series 

determined by polysomnography. C3 electrode 

(international 10-20 system), Ts=1/128Hz, t0=80ms and 

M=10 (Ts×M≒t0) are used. We can see that c2 tracks 

the Wake-Sleep transition well, i.e. c2 decreases from a 

positive value just before falling sleep, and after falling 

sleep c2 is almost constant nearly equal to zero. The 

same dynamical change was observed also in the other 

subjects. Fig.3 shows averaged time course over 26 

subjects. We defined the sleep onset of each subject as 

“the first N2” and designated that timing as t = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Estimated c2 time series during Wake-Sleep 

transition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Estimated c2 time series during Wake-

Sleep transition (averaged over 26 subjects). 
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3.2 During Nocturnal Sleep 

Fig.4 shows the c2 - t0 curve averaged in each sleep 

stage and averaged over 26 subjects. In this estimation, 

we use “variable t0” to investigate the loop resonance 

effect further. A short t0 region corresponding to high 

frequency oscillations (higher than about 15Hz) is 

omitted because Kim and Robinson’s compact model 

and therefore the analyzing method based on it loses 

validity in such a high frequency region [1,2]. In Wake, 

the c2-t0 curve shows a predominant peak around 

t0=80msec which is naturally interpreted as CTC 

resonance. Note that the curve in Fig.1 imitates the 

curve of Wake in Fig. 4. On the other hand, in N2-4, 

curves are rather flat near the horizontal axis (Fig.4). 

Most importantly, these curves do not resemble the 

curve in Fig.1, even if flipped upside down. Slight 

peaks observed in N2-3 may originate from sources 

other than the CTC loop, i.e. the intra-thalamus loop. 

As for N1 and REM sleep, they can be understood as 

transient or intermediate states between Wake and Non-

REM sleep. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: c2 - t0 curves in each sleep stage. 

3.3 Waking During Nocturnal Sleep 

   Fig.5 shows the c2-distribution (heathy subjects, n = 

26) during nocturnal sleep. The distribution exhibits a 

clear bimodal, which can be well approximated by 

superposition of two Gaussian distributions 

corresponding to sleep (Non-REM 1-4 and REM) and 

wake states, respectively. This observation suggests that 

the dynamical change of c2 obeys the Ornstein–

Uhlenbeck process in each state. Based on these 

findings, we propose a stochastic process model of 

Waking during Nocturnal Sleep as below. 

 

 

                                                                               (6) 

 

                                                                                (7) 

 

 

(8) 

 

Here, i denotes a stochastic state variable (0: sleep, 

1:wake); τ, σ and overbar denote time constant, noise 

strength, and equilibrium value of Ornstein–Uhlenbeck 

process in each state, respectively. A[0] and A[1] (A[0] 

+ A[1]=1) are the ratio of sleep and wake during 

nocturnal sleep, respectively. α is a parameter 

controlling the frequency of wake-sleep transitions. 

Eq.6 describes stochastic time evolution of c2 as discrete 

time Ornstein–Uhlenbeck process in each state 

(sleep/wake), while Eq.7 with Eq.8 describes transition 

between sleep and wake. 

Figure 6 shows the simulated c2-distribution during 

nocturnal sleep. 00.0]0[2 c , 08.0]1[2 c  , τ[0]=1.0min,  

τ[1]=1.8min, σ[0]=0.02min-1/2, σ[1]=0.04min-1/2, 

A[0]=0.95, A[1]=0.05, α=6.685 are used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: c2-distribution during nocturnal sleep 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: c2-distribution during nocturnal sleep 

(simulated). 

 

The simulated distribution corresponds to the 

experimental one very well, including slight distortion 

from Gaussian distribution. 

Fig.7 shows an example for experimental and 

simulated patterns of transitions between Wake and 

Sleep during nocturnal sleep. The simulated pattern 

resembles the experimental one very well.  
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Figure 7: Wake-Sleep Transition Pattern during 

Nocturnal Sleep. 

 

Fig.8 shows the probability density of Wake Duration  

(WD) during nocturnal sleep. In the range below 

several minutes, the simulated distribution of WD 

agrees with the experimental distribution, obeying a 

power law [7, 8].  

 

 

 

 

 

 

 

 

 

 

 

Figure 8: probability density of Wake Duration 

during nocturnal sleep. 

4 Conclusions  

In this work, we proposed a novel data processing 

method to analyze the Wake-Sleep transition based on a 

cortico-thalamic neural mass model. We confirmed that 

the parameter c2 decreases at the sleep onset and is 

almost zero in deep sleep (N2-N4). As c2 represents the 

effective strength of the CTC loop, this finding suggests 

that the Wake-Sleep transition can be understood as an 

“opening” of the CTC loop, which might be related to 

losing consciousness during sleep. Furthermore, we 

proposed a stochastic process model for waking during 

nocturnal sleep based on the analysis. We believe that 

these findings provide new insight into the Wake-Sleep 

transition with a new method of scalp EEG analysis. 
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Abstract 

Previous studies have described the presence of 
unsynchronized changes of the autonomic nerve 
system (ANS) and brain activity in time. The studies 
revealed that cardiac changes interact with EEG 
changes by a few minutes time delay in healthy 
subjects. Insomnia is known as a risk factor for 
psychiatric disorders, chronic medical disorders 
and cardiovascular disease. However, how the 
insomnia alters the interaction between cardiac 
autonomic system and EEG during sleep has yet 
been established. In this study, the time delay 
between HRV parameters which can access the 
ANS and beta EEG frequency band at the sleep 
transition moment was calculated with cross-
correlation function in insomnia patients was 
compared with those in normal controls. As a result, 
at the sleep transition from light sleep to REM sleep, 
the time delay between frequency HRV parameters 
and beta EEG frequency band in insomnia were 
shorter than those in normal controls. The results 
suggest that the interaction between autonomic 
cardiac activity and sleep EEG decrease in 
insomnia patients. 

Keywords Beta EEG, Heart rate variability, Sleep 

transition, Insomnia, and Autonomic nervous system

1 Introduction 

Heart rate variability (HRV) analysis is one of the 

simplest non-invasive methods to easily measure 

changes in autonomic activity which reflects the 

relationship between the parasympathetic and the 

sympathetic nervous system [1,2]. HRV analysis can be 

conducted using time or frequency domain analysis in R-

R intervals which is the time between consecutive R-

peak of the QRS complex on the electrocardiogram 

(ECG) [3]. 

In the past decade, changes in HRV in accordance to 

changes in sleep architecture as seen on the 

electroencephalogram (EEG) within the sleep-wake 

cycle have been studied. These studies have described 

the presence of unsynchronized changes of the 

autonomic nerve system (ANS) and brain activity in time 

[4-8]. The previous studies reported that cardiac changes 

preceded EEG changes by a few minutes in healthy 

subjects [3,6,8]. The results suggested that the relation 

between cardiovascular control and sleep regulation 

structure, such as thalamus and cortex, could be a system 

of two phase coupled oscillators. It can be noted that the 

time delay between EEG and cardiac activity indicates 

the interaction. 

Insomnia is defined as a feeling difficulty falling 

asleep or maintaining sleep, which results in decline in 

the quality of sleep. Insomnia may cause the 

development of psychiatric disorders such as depression, 

anxiety and other chronic medical disorders such as 

diabetes and arthritis [9]. And insomnia is reported as an 

independent risk factor for cardiovascular disease such 

as coronary heart disease and myocardial infraction [10-

12]. However, how the insomnia alters the interaction 

between cardiac autonomic system and EEG during 

sleep has yet been established. 

Jurysta et al., 2009 studied the interaction between a 

HRV parameter and sleep EEG power with coherency 

analysis and demonstrated that primary insomnia showed 

a less coherence between HRV and delta sleep EEG 

power than normal controls. But the primary insomnia 

has no significant difference in the time delay between 

two time series in comparison with normal controls. 

However, the methodology under the study did not take 

into account the possible impact of non-stationarity of 

the signals [7]. Moreover, the study considered only one 

HRV parameter (normalized high frequency). 

We, therefore, hypothesize that the interaction 

between autonomic cardiac activity and sleep EEG is 

altered in insomnia patients. To test the hypothesis, the 

time delay between six HRV parameters and beta EEG 

frequency band at the sleep transition moment was 

calculated with cross-correlation function in insomnia 

patients was compared with those in normal controls. 

2 Methods 

2.1 Subjects 

In the current study, 20 patients with primary insomnia 

according to DSM-IV criteria (American Psychiatric 

Association, 1994) and 20 healthy controls who had 

undergone diagnostic overnight PSG at the Center for 

Sleep and Chronobiology of Seoul National University 

Hospital were included The nocturnal polysomnographic 
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recordings were conducted based on the standard PSG 

manual and scored by certified sleep technologists and 

verified by sleep physicians in accordance with the 2007 

AASM manual [13]. All subjects were free of any 

cardiovascular disorders; neurological disorder; sleep-

related movement disorder; psychiatric pathologies. 

Anthropometric and sleep parameters of the subjects are 

summarized in table 1. The gender ratio, age, and body 

mass index (BMI) were matched between the two groups. 

The apnea-hypopnea index (AHI) and periodic limb 

movement index were lower than 10 events/h.  

 

Characteristic Normal  Insomnia 

N 20 20 

Sex, M/F 6/14 6/14 

Age, y 45.8 ± 15.3 47.5 ± 10.2 

BMI, kg/m2 23.7 ± 1.8 22.7 ± 2.4 

AHI, /h 5.5 ± 3.2 6.3 ± 2.0 

PLMI, /h 5.3 ± 4.1 6.8 ± 3.8 

Total Sleep Time, 

min 

427.9 ± 

54.1 
329.1 ± 56.4 

Sleep latency, min 16.1 ± 6.6 38.6 ± 15.4* 

Sleep Efficiency, % 91.5 ± 6.7 77.8 ± 7.0** 

% Wake 7.23 ± 5.11 11.61 ± 8.07 

% Light sleep 
62.40 ± 

6.61 
63.03 ±  7.65 

% Deep sleep 6.49 ± 7.20 5.35 ± 4.18 

% REM sleep 
23.67 ± 

4.97 

19.81 ± 

5.81** 

Table 1. Comparisons of insomniac patients and 

healthy controls with Mann-Whitney U test. Means ± 

Standard Deviation. BMI, body mass index; AHI, apnea-

hypopnea index; PLMI, periodic limb movement index; 
*p < 0.05. **p < 0.01. ***p < 0.001. 

2.2 Experimental Design 

The EEG activity was quantified by beta spectral 

power band, 16.0–25 Hz. The EEG power band was 

obtained by a fast Fourier transformation of EEG 

recordings during each non-overlapping 5-s data window. 

The spectral power was averaged over 30-s epochs. The 

HRV parameters were derived from the ECG signals 

over a 9-epoch window centered on each 30-s epochs to 

include reliable heartbeats for reduction of signal noise. 

HR, SDNN, LF, HF, VLF and LF/HF were included for 

HRV parameters. Afterwards, all parameters were 

normalized to zero mean and unit variance (Z-score) for 

each recording. 

To calculate time delay between the changes of HRV 

and EEG activity, we considered the periods with 10 

epochs (5 min) before and after each sleep transition 

moment to obtain sufficient data for cross-correlation 

analysis. The sleep transitions which have under 5% 

were excluded considering relying data for analysis 

(Table 2). 

Moreover, the periods where the only one sleep 

transition occurred in each period were included for 

analysis to avoid other transition effects [8] and the 

periods where any respiratory or sleep movement event 

occurred were excluded [14, 15]. In totally, 212 periods 

and 193 periods were selected from all recordings (Table 

3). 

 

State 

The next state 

Deep 

sleep 

Light 

sleep 
Wake 

REM 

sleep 

The 

previous 

state 

Deep sleep  11.9 0 0 

Light sleep 10.8  22.7 10.8 

Wake 1.1 30.8  1.1 

REM sleep 0.07 4.7 1.6  

(a) 
 

State 

The next state 

Deep 

sleep 

Light 

sleep 
Wake 

REM 

sleep 

The 

previous 

state 

Deep sleep   15.4 0 0 
Light sleep 7.6   27.1 11.5 

Wake 0.04 27.7   3.8 
REM sleep 0.1 4.4 2.3   

(b) 

Table 2. (a) Mean percentages of sleep transitions in 

normal controls (b) Mean percentages of sleep 

transitions in insomnia patients. Gray: excluded 

transitions. 

Transition 
Number of transitions, n 

Normal Insomnia 

W → LS 46 41 
LS → W 38 35 
LS → RS 62 59 
LS → DS 35 31 
DS → LS 31 27 

In total 212 193 
Table 3. Number of transitions in normal controls and 

insomnia patients 

To study the time delay between HRV parameters and 

beta EEG frequency band at sleep transition, cross-

correlation function was applied [16]. The cross-

correlations are often used to quantify temporal delay 

between two sets of time-series data. For a pair of 

sequences 𝑥𝑖 and 𝑦𝑖  of size N with same sampling rate, 

the cross-correlation function is given by 

𝑟𝑥𝑦(𝑘) =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖+𝑁−𝑘 − �̅�)𝑘

𝑖=1 + ∑ (𝑥𝑖 − �̅�)(𝑦𝑖−𝑘 − �̅�)𝑁
𝑖=𝑘+1

√∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1 √∑ (𝑦𝑖 − �̅�)2𝑁

𝑖=1

 (1) 

Where k refers a time shift of one signal(y) relative to 

the other signal (x) and 𝑟𝑥𝑦  vary from -1 to 1 representing 

the similarity between the two signals with k time shift. 

Also, �̅�  and �̅�  are the sample mean of signal x and y, 

respectively. The delayed time ∆τ was calculated by the 

time shift with maximum absolute correlation coefficient 

as following: 

∆τ =
/

𝑎𝑟𝑔𝑚𝑎𝑥
𝑘

|𝑟𝑥𝑦(𝑘)|,     𝑘 = 1,2, ⋯ , 𝑁                      (2) 

A positive ∆τ value indicates that EEG frequency band 

change precedes HRV parameters time lag ∆τ (30-s 

epochs). Conversely, a negative value means that EEG 
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frequency band changes later than HRV parameters on 

average. 

2.3 Statistical analysis 

To detect differences between insomnia patients and 

healthy controls, the comparison of time delay between 

HRV parameter changes and EEG changes in insomnia 

patients and healthy controls were performed with 

nonparametric test (i.e., the Mann–Whitney U test) 

because that the distribution was not normal. The 

significance level was set at p < 0.05. 

3 Results 

The calculated time delay and the correlation 

coefficient at sleep transitions are written in Table 4. The 

significant difference between normal controls and 

insomnia patients appeared only in the sleep transition 

from light sleep to REM sleep. 

In sleep transition light sleep to REM sleep, HR and 

SDNN in insomnia did not differ from those in normal, 

but LF, HF, VLF and LF/HF were shown as shorter time 

delay in insomnia with 1-1.5 min than normal with 2.5 

min-4.5min. 

 
HRV 

parameter 

W → 

LS 

LS → 

W 

LS → 

RS 

LS → 

DS 

DS → 

LS 

HR 
∆τ -1 0 -1 -1 0 
r 0.88 0.80 0.85 -0.70 -0.81 

 

SDNN 
∆τ -2 -4 -2 -3 -4 

r 0.82 0.68 0.53 0.66 0.70 
 

LF 
∆τ -4 -2 -5 -3 -3 

r 0.76 0.77 0.63 0.74 0.87 
 

HF 
∆τ -4 -3 -8 -4 -4 
r -0.76 -0.65 -0.64 -0.76 -0.78 

 

VLF 
∆τ -5 -3 -9 -4 -5 

r 0.81 0.67 0.49 0.64 0.77 
 

LF/HF 
∆τ -5 -6 -7 -6 -6 

r 0.70 0.68 0.65 0.80 0.76 

(a) 

 
HRV 

parameter 

W → 

LS 

LS → 

W 

LS → 

RS 

LS → 

DS 

DS → 

LS 

HR 
∆τ -1 0 -1 -1 -1 

r 0.68 0.74 0.81 -0.88 -0.71 
 

SDNN 
∆τ -3 -4 -1 -3 -3 

r 0.86 0.56 0.65 0.48 0.68 
 

LF 
∆τ -5 -2 -2* -3 -4 
r 0.84 0.81 0.65 0.71 0.69 

 

HF 
∆τ -4 -5 -3** -5 -5 

r -0.62 -0.63 -0.71 -0.73 -0.70 
 

VLF 
∆τ -5 -3 -2** -4 -4 

r 0.76 0.77 0.84 0.78 0.80 
 

LF/HF 
∆τ -5 -7 -2** -6 -5 
r 0.77 0.68 0.65 0.70 0.71 

(b) 

Table 4. Results of time delay ∆τ [30-s] and the 

maximum correlations coefficients r between beta EEG 

frequency band and six HRV parameters for sleep 

transition from light sleep to REM sleep. (a) Normal 

controls (b) Insomnia patients. *p < 0.05. **p < 0.01. 

4 Conclusions  

In current study, we investigated the time delay 

between cardiac and brain activity for different sleep 

transitions in sleep of normal and insomnia patients. We 

demonstrated that patients suffering from chronic 

primary insomnia showed a decreased amount of 

interaction between beta EEG band and HRV frequency 

domain parameters in sleep transitions from light sleep 

to REM sleep. Patient with insomnia exhibit the 

increased beta EEG activity during sleep in comparison 

with normal controls [17, 18]. 

According to the neuronal transitias probability (NTP) 

model [19], the rate of decline in beta activity over the 

NREM sleep cycle is slower and thus may represent 

phase shifted waveform. The phase-shifted beta EEG 

wave affects the time delay between beta EEG and HRV 

at the transition moment. 

The results suggest that the interaction between 

autonomic cardiac activity and sleep EEG decrease in 

insomnia patients. 

Previous research on the coupling between EEG and 

cardiac autonomic activity has focused mainly on the 

interactions between sleep delta activity and normalized 

high frequency cardiac activity [9], while our study 

extended this analysis to beta EEG frequency band. Also, 

the signals considered in this study were time series at 

the transition moments which were not have any impact 

of respiratory or sleep movement event and non-

stationary signal. 

These investigations helped provide better insight into 

the complex relation between sleep and autonomic 

system, and led also to promising indications about the 

diagnosis and treatment of insomnia. 
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Abstract 

Here, we describe a microwave radar system and 
analysis method for non-contact monitoring of heart 
rate (HR) and heart rate variability (HRV). 
Microwave radar parameters were compared with 
those obtained with a reference polysomnography 
measurement. The proposed system can measure 
pulse waves of a sleeping patient using two 24-GHz 
microwave radars placed under the mattress. We 
developed a method that dynamically selected the 
window width of the moving average filter to extract 
the pulse waves from the radar output signals. Test 
measurements were performed in 10 healthy male 
subjects. The mean Pearson correlation 
coefficients for the two overnight HR and HRV 
measurements derived from the microwave radars 
versus those from the reference polysomnography 
were 0.89 and 0.69, respectively. The accuracy of 
sleep stage classification using the radar system 
ranged from 0.59 to 0.79. These data suggest that 
our dual microwave radar system can accurately 
measure high sensitivity pulse waves. 
Measurement of HR and HRV derived from 
microwave radar may be useful in assessment of 
sleep quality and other health-related parameters at 
nursing care facilities. 

Keywords Physiological monitoring, Heart rate, Heart 

Rate Variability, Non-Contact Measurement, Radar

1 Introduction 

There is increasing interest in use of non-contact 

measurement techniques for health assessment, 

including cardiac activity for elderly people in nursing 

homes [1], drivers in a car [2], and athletes during 

exercise [3]. Electrocardiogram (ECG) measurements, 

particularly heart rate (HR) and heart rate variability 

(HRV), provide important data on autonomic nervous 

system (ANS) activity and various health-related 

indicators. Further, by analyzing ANS activity, it is 

possible to classify sleep stages and diagnose the severity 

of obstructive sleep apnea. The Holter-type measurement 

device is the traditional method for long-term ECG 

recording, although it requires obtrusive wired electrodes. 

Thus, techniques for non-contact monitoring of 

nighttime cardiac activity in unaware patients have 

been developed, using direct or indirect measurement of 

the small skin displacements caused by arterial blood 

pulse waves, as well as electromagnetic energy generated 

in the heart [4]. These non-contact methods include 

microwave and ultrasound (40 kHz) radars (termed 

direct mechanical methods) [5, 6], ballistocardiograms 

(pressure sensitive sensors; termed indirect mechanical 

methods) [1, 7, 8], and capacitive type electrodes (textile 

electrodes; termed electromagnetic methods) [9, 10]. 

However, these systems have a number of limitations, 

including relatively small distances between the 

measuring sensor and the human body, and susceptibility 

to environmental disturbances and movement artifacts. 

These limitations are method dependent. For example, 

ballistocardiograms and capacitive type electrodes are 

more dependent on the distance (<5 cm) between the 

sensor and the subject than microwave radars. By 

contrast, microwave and ultrasound radar techniques are 

capable of extracting HR information over large 

distances [4]. However, they exhibit a susceptibility to 

human posture and position in bed. Successful detection 

of respiratory rate and HR based on frequency analysis 

using microwave radar from four sides of the human 

body was also reported [5], although accurate detection 

of the overnight RR intervals is required for calculation 

of HRV. 

In the present study, we propose a novel HR and HRV 

monitoring system using microwave radars and dynamic 

selection of the window width of the moving average 

filter, which allows robust and reliable long-term 

overnight measurement. This method can overcome the 

movement artifacts commonly associated with 

microwave radars, and can accurately classify sleep 

stages in test subjects.  

2 Methods 

2.1 Measuring system and data collection 

The non-contact HR and HRV monitoring system is 

shown in Fig. 1. Two microwave radar sensors (24 GHz, 

NJR4262J; New Japan Radio, Tokyo, Japan) were 

installed beneath the mattress of each subject’s bed, 

located at their home or nursing care facility. The output 

of the radar was 40 mW equivalent isotropically radiated 

power, and the incident power density on the body 

surface was 1.5 × 10−2 mW/cm2, which is much lower 

than the Japanese safety guidelines for protection from 

harmful electromagnetic waves (1 mW/cm2). Sample 

output signals are shown in Fig. 1. Radar output signals 
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are composed of respiratory movements, pulse waves, 

and body movements. A representative example of the 

appearance of the pulse waves without breathing artifact 

is shown in Fig. 1. The microwave radar provides two 

orthonormal baseband signals (in-phase and quadrature 

baseband outputs). We used the dynamic channel 

selection (DCS) technique to select the optimal radar 

channel with the least number of irregular RR intervals 

from four radar output signals. 

Ten healthy male volunteers from Tokyo Metropolitan 

University (age 22.7 ± 0.9 y) participated in this study. 

Recordings were performed for one night for each 

individual. Polysomnography (PSG) recordings 

(PSG1100; Nihon Kohden, Tokyo, Japan) were 

performed for every subject. After PSG measurement, 

expert personnel evaluated the subject’s sleep, and stages 

(wake, REM, N1, N2, N3, and N4) were classified in 30 

s epochs according to the American Academy of Sleep 

Medicine rules. All recording durations were 8 h, lasting 

from 22:00 to 06:00 the next morning. The research 

protocol was approved by The Tokyo Metropolitan 

University Ethics Committee, and all subjects gave 

written informed consent. 

2.2 Detection of pulse waves from radar 

output signals 

It is difficult to detect pulse waves from radar output 

signals, as this requires extraction of a small signal (pulse 

waves) in a large amount of background noise 

(respiratory and body movements). We used a moving-

average filter and a background-subtraction technique to 

detect the pulse waves from the radar output signals (Fig. 

2). For the radar-output data series, with S sampled at 

100 Hz, S(𝑛) can be expressed as in Eq.1.  

S(𝑛) = H(𝑛) + R(𝑛) + B(𝑛) + W(𝑛), (1) 

where H(𝑛) are the pulse waves, R(𝑛) are the respiratory 
movements, B(𝑛) are the body movements, and W(𝑛) is 
the white noise, at the estimated point 𝑛 . Despite its 
simplicity, the moving-average filter is optimal for this 

task, as the low-pass filter removes the high-frequency 
components while retaining a sharp step response. The 
output of the symmetric moving-average filter with the 
input of S(𝑛) is given by Eq.2. 

MA(𝑖) =
1

𝑁
∑ S(𝑖 + 𝑗), 𝑁 = 2𝑚 + 1

𝑗=𝑚
𝑗=−𝑚 , (2) 

where 𝑁 is the number of points in the average, denoted 
as a window width, given 𝑖 as a measuring-point index. 
The cutoff frequency of this filter decreases with the 
width of the window 𝑁 . For example, for a frequency 
cutoff of 0.55, 𝑁 should be 81 (810 ms). Similarly, the 
window width is 41, 21, or 11 at a cutoff frequency of 1.1 
Hz, 2.2 Hz, or 4.4 Hz, respectively. If the window width 
𝑁 is an appropriate value (e.g., 81, 41, 21, or 11), the 
moving-average filter provides an excellent low-pass 
filter, and eliminates the high-frequency movements 
H(𝑖) and W(𝑖). Thus, the filter output signal MA(𝑖) can 
be approximated as in Eq.(3). 

      MA(𝑖) ≅ R(𝑖) + B(𝑖).  (3) 

We subtracted the filter output MA(𝑖)  from the radar 
output  S(𝑖) to extract the pulse waves, as in Eq. (4). 

       S(𝑖) − MA(𝑖) ≅ H(𝑖) + W(𝑖) ≅ H(𝑖).  (4) 

The conditions required to collect pulse waves by radar 

can change according to body position and posture in the 

bed. Thus, every minute, we dynamically selected the 

window width (DSWW) from four values (81, 41, 21, or 

11) to provide the least number of irregular periods in the 

detected RR intervals (Fig. 2). Posture-dependent small-

amplitude R-peaks and a lower signal-to-noise ratio were 

observed with this method (Fig. 2b). Next, we averaged 

the ten newest RR intervals and defined irregular 

intervals as those <83% or >166% of this average [11]. 

R-peaks were detected using an adaptive-threshold 

algorithm. HR was calculated from the average of the ten 

newest RR intervals. 

2.3 Compensation for respiratory-related 

noise 

In our test measurements, the noise amplitude of the 

respiratory-related signal peak was occasionally higher 

Figure 1: Setup of the HR and HRV monitoring system 

and representative microwave radar signals. 

Figure 2: Dynamic selection of the most suitable 

window width. (a, b) Radar output signals and (c–f) 

extracted pulse waves. (c) and (f) are examples of the 

optimal choice for the window width 𝑁. 
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than the actual R-peak amplitude (Fig. 3). Thus, in cases 

where the pulse waves were contaminated by respiratory 

movement components, we selected the R-peak that 

corresponded to the position of intermediate time 

between two surrounding R-peaks, rather than the peak 

with the highest amplitude. 

2.4 HRV calculation 

HRV spectral analysis was applied using the 
autoregressive method on a series of 120 RR intervals 
obtained from radar pulse waves. We determined the low-
frequency (LF) components (0.04–0.15 Hz), which 
largely reflect sympathetic modulation with some 
parasympathetic influence, and the high-frequency (HF) 
components (0.15–0.4 Hz), which reflect 
parasympathetic activity. HRV is highly sensitive to 
artifact and errors. Thus, we used the DSWW method to 
remove artifacts and RR interval errors prior to spectral 
analysis. 

3 Results and Discussion 

3.1 HR and HRV measurement 

Overnight time series data for HR, LF, and HF derived 

from the microwave radars (solid line) and by ECG 

(dashed line) from subject t3 are shown in Fig. 4. The 

Pearson correlation coefficients of the HR, LF, and HF 

values derived from the microwave radar with DSWW 

were higher than those from the microwave radar without 

DSWW. There was a strong correlation (r=0.91, 

p<0.001) of radar measurement with ECG, with an 

average difference of 2.5% (Fig. 4d). However, the 

algorithm for detecting the R-peak by microwave radar 

was not suitable when the RR interval rapidly decreased. 

The performance of this system compared with ECG is 

shown in Table 1. Although the average correlation 

coefficient of HRs derived from overnight microwave 

radar with the reference ECG was 88.5% (n=10), the 

average correlation coefficients for LF and HF 

parameters were lower at 73.3% and 64.5%, respectively. 

Although a direct comparison between our findings and 

previous studies is difficult because of differences in 

error estimators, or as reported results are for shorter, 

non-overnight measurements, our findings showed high 

HR coverages and were equivalent to capacitive type 

electrodes attached to the human body [9, 10]. 

Table 1: Performance of the microwave radar system 

compared with ECG. 

Subject 
Pearson correlation coefficients 

Heart rate LF HF 

t1 0.93 0.75 0.52 

t2 0.93 0.77 0.58 

t3 0.91 0.81 0.81 

t4 0.94 0.86 0.84 

t5 0.67 0.61 0.68 

t6 0.97 0.73 0.69 

t7 0.90 0.71 0.57 

t8 0.96 0.79 0.73 

t9 0.86 0.69 0.52 

t10 0.78 0.61 0.51 

mean 0.885 0.733 0.645 

3.2 Sleep stage classification 

By applying a decision tree analysis (Weka v.3.8: The 

Waikato Environment for Knowledge Analysis, 

University of Waikato, New Zealand) that builds a 

predictive model using entropy to calculate the 

homogeneity of the data set, we classified sleep stages 

according to the LF/HF ratio, HF, HR, mean respiratory 

rate (MR), standard deviation of respiratory intervals 

(SDR) and the body movement index (BI) [12] derived 

from microwave radar data. The decision tree generated 

by Weka is shown in Fig. 5. BI, SDR, and LF/HF ratio 

were strong indices for classification of sleep stage. The 

performance of the classification was evaluated in each 

leave-one-out (LOO) cross-validation loop. The 

accuracy of this method compared with PSG is shown in 

Table 2. The accuracy of identifying two stages (wake 

and sleep) was 78.9%, of classifying three stages (wake, 

REM, and NREM) was 72.4%, and of classifying four 

stages (wake, REM, LIGHT, and DEEP) was 58.9%. 

 
 
Figure 3: Compensation for respiratory-related noise. 

The amplitude of the pulse wave can occasionally 

overlap with background respiratory-related noise. In 

such cases, the peak corresponding to the median time 

of the surrounding R-peak, rather than the biggest 

peak, is selected as the R-peak. 

 

Figure 4: HR and HRV values derived from overnight 

microwave radars (solid line) or ECG (dashed line) 

from subject t3. (a) HR, (b) LF, and (c) HF without 

DSWW. (d) HR, (e) LF, and (f) HF with DSWW. 

 

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

122



This was higher than that derived from canonical 

discriminant analysis using the same input data. The 

accuracy of the two-stage classification of the subject 

(t5) was <50%, which is why the BI indices while asleep 

were stronger than for other subjects. 

The performance of our system was equivalent to that 

of recent studies using bed-sensor or decision-tree 

support-vector machines [7, 13]. Thus, our non-contact 

radar system may be useful for assessment of sleep 

stages classification at nursing care facilities as well as 

the general public. 

 

Table 2: Performance of sleep stage classification 

using microwave radars. 

Subject 
Accuracy (%) 

2 stages 3 stages 4 stages 

t1 94 80.2 65.3 

t2 83.4 79.1 53.4 

t3 74.8 71.7 60.1 

t4 88.1 75.8 64.8 

t5 43.9 26.5 26.9 

t6 74.3 72.2 58.7 

t7 85.3 84.5 63.3 

t8 84.4 80.2 67.4 

t9 79.2 75.8 71.9 

t10 81.6 77.7 57.6 

mean 78.9 72.4 58.9 

4 Conclusions 

We developed a novel non-contact overnight cardiac 

monitoring system that uses two microwave radars, and 

applied a number of signal processing techniques to 

assess HR and HRV in unaware subjects. This system 

exhibited high sensitivity, without the need for body 

contact, and may be useful in many health-related fields. 

Further studies are required to fully develop this system, 

including an algorithm to account for rapidly changing 

heartbeat intervals.  
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 Figure 5: Decision tree generated by machine learning. 
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Abstract

We implemented a predictor-corrector method
for the classification of two-channel EEG data into
sleep stages. The predictor step is realized by a
Markov Chain producing an informative prior distri-
bution via a transition matrix. The correction step
is realized by applying a Bayes Classifier using the
(preprocessed) data and this prior. The prepro-
cessing step consists of a frequency analysis, a log
transformation and a dimensionality reduction via
Principle Component Analysis. The software auto-
matically generates sleep profiles in which it detects
wakeful phases as well as the different sleep stages
with error rates of 20%-34%, where we compared
our results to ones of a certified polysomnographic
technologists, who used a full polysomnography and
rated according to the Rechtschaffen and Kales cri-
terion.

Keywords Automatic sleep-staging, predictor-
corrector method, Markov Chain, Bayesian statistics, EEG

1 Introduction

Electroencephalography, a method for measuring po-
tential differences on the head surface, is a vital instru-
ment for the diagnosis of illnesses of the central nervous
system. Ever since the 1960ies, EEGs have also been
used for the examination of sleep processes. With their
help, one can classify different stages of sleep as well as
diagnose forms of insomnia, dysfunctions of the circa-
dian rhythm and other pathological states of dormancy.
So far, the evaluation of EEGs is done by hand with the
help of a polysomnography software, which still requires
time and effort. To reduce the strain of sleep-staging, it
is our goal to implement an automatic sleep-staging soft-
ware. Further, we are using only two-channel measure-
ments (A1 and A2) in constrast to a full polysomnog-
raphy, proving that machine learning algorithms require
only very reduced measurement data.

1.1 Automatic Sleep-Staging

The automatic staging of sleep phases has been at-
tempted with various different methods ([1, 2, 3, 4]).
Among these methods, there are different Machine
Learning algorithms, such as the classification using sup-

port vector machines (SVM) as in [2], rule-based algo-
rithms such as in [4] or even hidden Markov models (as in
[5]), the success of these algorithms varies, as the method
of measurement and the data sets also greatly vary.

1.2 Two-Channel Staging

The automatic sleep-staging of single-channel or two-
channel EEGs has been used in different contexts so far.
In [6], ear EEGs have been proven to record signals that
represent alpha activity, K complexes and other signif-
icant EEG structures and further, mastoid signals have
been used for sleep-staging in [7] and [8]. This leads us
to believe that ear measurements contain sufficient infor-
mation for the classification of sleep stages. In our case,
we will also consider the two-channel measurement of
the nodes A1 and A2, which are measured at the ears and
are typically used as reference electrodes. We used three
sets of two-channel measurements.

1.3 Overview and Notation

Our data set consists of A1- and A2- measurements
over 8 hours of sleep of several persons with a sampling
rate of 256Hz. This data is divided into blocks of 30 sec-
onds that contain 256*30=7680 measurements each for
A1 and A2, resulting in so-called epochs

EAk
1 , . . . , EAk

T ∈ R7680, k = 1, 2.

We divide the set of epochs into a training set and a test
set

Ektrain = (EAk
1 , . . . , EAk

Ttrain
), Ektest = (ẼAk

1 , . . . , ẼAk

Ttest
),

for k = 1, 2. In our case, we divided the 8-hour-
measurement into two halves and used the first half as the
training set and the second half as the test set. This choice
shall be improved in the next stages of this project, as it is
known that REM sleep typically occurs more often in the
second half of the night. The sleep stages corresponding
to these epochs will be denoted by random variables

X1, . . . , XTtrain
, Y1, . . . , YTtest

∈ S, where

S = {’Awake’, ’Stage 1’, ’Stage 2’, ’Stage 3’, ’REM’}

The epochs were classified by a professional scorer,

Xτ = xτ , τ = 1, . . . , Ttrain, Yt = yt, t = 1, . . . , Ttest
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which we will assume to be the “true” classification.
Our aim is to train our algorithm using only the map-

ping

Ψprof : (EA1
τ , EA2

τ ) 7→ xτ , τ = 1, . . . , Ttrain,

of the training set to classify the test set

Ψest : (EA1
t , EA2

t ) 7→ yestt , t = 1, . . . , Ttest,

where est stands for estimate, such that yestt = yt with
high probability.

2 Methods

2.1 Preprocessing

For the classification of EEG data, the frequencies of
the current epoch are a much more significant indicator
for the sleep stage than the measurement vectors EAk

i ∈
R7680 (which are difficult to compare due to e.g. shifts
in time). Therefore it is meaningful to take the Fourier
transform of each measurement:

EAk
t ∈ R7680 7→ FAk

t = |FFT(EAk
t )| ∈ R7680.

In addition, switching to the frequency domain provides
the possibility to get rid of confounding measurements,
also called artifacts, which is a common problem when
dealing with EEG data arising from movements of the
patient or sweat on his skin. This is realized by low
pass filtering, i.e. ignoring all frequencies above a cer-
tain threshold (85 Hertz):

FAk
t 7→ F̃Ak

t = proj(FAk
t ) ∈ R2560,

where proj(v) is just the projection of a vector v ∈ R7680

onto its first 2560 coordinates. This does not lead to a
loss of relevant data, since the frequencies used for pro-
fessional scoring are below this threshold.

It turned out that the resulting 2560-dimensional vec-
tor space is too huge to classify upon, making a further
dimension reduction step necessary. This was realized
using a Principle Component Analysis (PCA), projecting
onto the 20 dominant Eigenspaces of the covariance ma-
trix of the data. The number of optimal Eigenspaces was
determined via a scree plot.

Since higher frequencies tend to have smaller ampli-
tudes, in fact, the coefficients in the Fourier transforms
we considered decay exponentially, the data was loga-
rithmized prior to the PCA. This way, an a-priori bias
towards the lower frequencies is avoided.

F̃Ak
t 7→ log(F̃Ak

t ) ∈ R2560 PCA7−−−→ mAk
t ∈ R20, .

where mt is the result of the PCA. As an alternative to
taking the logarithm, a scaling of each Fourier coefficient
(the amplitude of each frequency) with the inverse of its
mean can be performed.

Overall, the preprocessing consists of the following
steps:

R7680 → R2560 → R2560 → R20

EAk
t

FFT7−−−→
proj

F̃Ak
t 7→ log F̃Ak

t
PCA7−−−→ mAk

t

So, from now on, we are going to work with vectors
mt = (mA1

t ,mA2
t ) ∈ R40.

2.2 Bayes Classifier

Important elements of Bayesian inference are the
prior, the distribution of a random variable before mea-
surements and the posterior, which can be viewed as the
distribution of the same random variable given (or condi-
tioned on) a measurement. Generally speaking, for ran-
dom variables A, B, with density functions ρA, ρB and
realizations a of A and b of B, Bayes’ theorem states:

ρA(a|B = b) =
ρA(a)ρB(b|A = a)

ρB(b)
,

where each of the terms has the following name,

posterior =
prior× likelihood

evidence
.

For a given measurementB = b and an unknown random
variable A, the Bayes Classifier assigns the maximum-a-
posteriori (MAP) estimate:

aMAP = arg max
a

ρA(a|B = b).

2.3 Predictor-Corrector Method

In an attempt to improve the result of the Bayes Classi-
fier proper prior distributions πt are chosen for each time
step. The posterior distributions pt resulting from the
application of Bayes classifier to the measurements mt

are computed and the final classification is chosen as the
MAP-estimator of these distributions.

yestt = arg max
s∈S

pt(s)

More specifically, the prior distribution π1 for the initial
stage Y1 is chosen using the relative frequencies of the
single stages in the training set:

π1(s) =
#{xτ = s | τ = 1, . . . , Ttrain}

Ttrain
, s ∈ S

This prior distribution is updated using the (preprocessed)
measurement mt ∈ R40 (here for t = 1) and its likeli-
hoods Ls,t = ρMt

(mt|St = s), s ∈ S, t = 1, . . . , Ttest,
given the respective stages (here we denoted the random
variable of preprocessed data by Mt and its realization
by mt). The posterior distribution pt in each time step is
computed via Bayes’ rule:

pt(s) =
πt(s)Ls,t∑

s′∈S π1(s′)Ls′,t
, s ∈ S.

The prior πt+1 for the next stage Yt+1 can include more
information than the initial stage, since we already have
knowledge on the previous stage Yt and it is e.g. more
likely to transition from ’Stage 1’ to ’Stage 2’ than from
’Stage 1’ to ’Stage 3’ (in fact, it is most probable to
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Figure 1: Classification using the predictor-corrector-based software in blue. In comparison, the classification of a pro-
fessional scorer, who used the measurements of a polysomnography, is plotted in red.

stay in each stage). In accordance with the Chapman-
Kolmogorov equation for discrete Markov Chains, we
choose

πt+1 = Ppt,

where P ∈ R5×5 is the transition matrix computed form
the relative frequencies of the transitions between each
pair of stages:

Ps,s′ =
#{xτ+1 = s, xτ = s′ | τ = 1, . . . , Ttrain − 1}

#{xτ = s′ | τ = 1, . . . , Ttrain − 1}
.

This way, a predictor-corrector method (or discrete-time-
discrete-state Kalman filter) is implemented using the in-
formation from the previous posterior for the construction
of the current prior and the measurements and Bayes’ rule
for the update to the current posterior.

3 Results

As it can be seen in Figure 1, the overall structure of
the automatic classification comes close to the scoring of
a professional, who used a polysomnography. The total
error rates for three patients in comparison to profession-
als were 20%, 24% and 34% for three patients. The de-
tailed error rates for the three patients are given in the
following table:

Stage Awake Stage 1 Stage 2 Stage 3 REM

Patient 1 0.21 0.34 0.19 0.10 0.21

Patient 2 0.35 0.38 0.13 0.15 0.44

Patient 3 0.36 0.33 0.19 0.17 1

Table 1: Percentage of False Classification For Each
Stage

Further, the confusion matrices show that there is fairly
certain classification for stages 1,3 and 4. However, stage
2 seems to be difficult to classify and the REM stage is
often falsely classified as stage 1.

Classification
Awake Stage 1 Stage 2 Stage 3 REM

Stages

Awake 23 6 0 0 0
Stage 1 14 41 4 0 3
Stage 2 4 15 130 7 4
Stage 3 1 0 6 63 0
REM 4 24 6 0 128

Table 2: Confusion matrix of patient 3, where the clas-
sifications of a professional scorer are compared to the
output of the algorithm.

4 Discussion

In conclusion, we can see as a proof of concept
that a considerable amount of information can be ex-
tracted from the two channels A1 and A2 that are usually
only used as reference electrodes. Also, the predictor-
corrector method offers relatively few errors, even be-
yond the recognition of wakefulness and sleep.

Limitations of the method include the loss of informa-
tion when only using two-channel sleep-staging. Certain
frequencies that can mostly be measured in certain areas
of the scalp, which are lost when the measurements are
reduced to A1 and A2. Also, a better subdivision of a
test and training set would have been favorable, as there
is significantly more REM sleep in the second portion of
the night. The classification of the measurements of Pa-
tient 3 has a very large error, as there is no REM sleep
in the training set. Therefore it is impossible to be recog-
nized in the second half of the night.

Future work will include different divisions of train-
ing and test set. Possibly, one could record two seperate
measurements for the same patient, so as to use one of the
measurements as training and the second one as a test set.
Also, we will further use better dimension reduction and
feature selection methods. Lastly, we are planning an im-
proved adaptation of the classifier to the problem at hand,
meaning that we will implement a new Bayes Classifier
using an adjusted likelihood.
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Abstract 

The purpose of the study was the assessment 
of the activation pattern of Extensor digitorum 
brevis (EDB) muscle in healthy children, during 
walking at self-selected speed and cadence. To 
this aim, the Statistical Gait Analysis was 
performed on surface electromyographic (sEMG) 
signals, in a large number (hundreds) of strides 
per subject. Results from eight healthy children 
showed a large variability in number of muscle 
activations, occurrence frequency, and onset-
offset instants across strides analyzed. The 
assessment of the different modalities of activation 
allowed identifying a single activity pattern, 
common for all the modalities and able to 
characterize the behavior of EDB during normal 
gait. The pattern of muscle activity centered in two 
main regions of the gait cycle: the second half of 
the stance phase (detected in 100% of the 
subjects) and in final swing phase (50%). This 
‘‘normality’’ pattern represents the first attempt to 
develop a reference for dynamic sEMG of EDB in 
healthy children that is able to include the 
physiological variability of the phenomenon. The 
present results could be useful for discriminating 
physiological and pathological behavior in children 
and for deepening the maturation of gait. 

Keywords: sEMG, Extensor digitorum brevis, 

Statistical Gait analysis 

1 Introduction 

The assessment of muscles activity plays a relevant 

role in evaluation of children disorders during gait. In 

order to correctly interpret surface electromyography 

(sEMG) in pathological conditions, reliable normative 

data in non-pathological children are required for direct 

comparison. To this aim, many studies focused on 

assessing the variability of muscles activity during 

normal gait [1-4]. In particular, the analysis of ankle 

muscles is fundamental in the characterization in 

children of pathologies such as spastic cerebral palsy. 

During normal walking in adults such as in children, 

the main role of the ankle dorsi-flexors is to prevent 

slapping of the foot on the ground in initial stance, to 

permit the forefoot to clear the ground in initial swing, 

and to hold the ankle in position for initial contact [5]. 

Instead, ankle plantar flexors act to restrain the forward 

rotation of the tibia on the talus during stance phase, 

provide ankle stability, contribute to knee stability, and 

conserve energy by minimizing vertical oscillation of 

the whole-body center of mass [5]. Moreover, there is a 

relationship between ankle and foot muscle. The foot is 

a complex structure, functionally important in static 

posture and dynamic activities. The movement and 

stability of the foot is controlled by intrinsic and 

extrinsic muscles [5]. So, human foot muscles provide 

to stabilize the foot during propulsion, to improve 

pressure distribution on the plantar surface, adapting to 

dynamic or postural load changes during normal gait [6-

8]. 

One of the main foot intrinsic muscles carrying out 

these tasks is Extensor digitorum brevis muscle (EDB). 

EDB is a relatively flat muscle which occupies an 

exposed position on the dorsum of the foot. This muscle 

arises from the forepart of the upper and lateral surfaces 

of the calcaneus and passes to the dorsum of the foot to 

insert on the dorsal aponeurosis of the 2nd to 4th toes 

(Fig.1). EDB controls the movements of the foot toes, 

assisting with extension of the second, third and fourth 

toes at the metatarsophalangeal joints [9]. The role of 

EDB, during gait, is only partially understood and little 

work has been done to investigate the activation pattern 

of EDB activity [5, 10, 11]. To our knowledge, no data 

were reported in children population. Thus, the aim of 

the present study was to quantify the variability of the 

activity of Extensor digitorum brevis in healthy 

children, during gait at self-selected speed and cadence. 

sEMG signals were acquired in numerous strides per 

subject (hundreds), to consider the expected large 

variability of the muscular activity. 

Figure .1 EDB anatomy 
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2 Methods 

2.1 Subjects 

 

Data from eight healthy children were analyzed. 

Mean (±SD) characteristics are: age 8.3 ± 1.7 years; 

height 136± 8 cm; mass 30.9 ± 6.2 kg. Participants with 

a previous medical history involving foot or ankle 

surgery, inflammatory arthritis, neuromuscular disease, 

balance disorders, an inability to walk unaided were 

excluded from the study. Parental consent and child 

assent were obtained. 

 

2.2 Signal Acquisition and Processing  

 
Signals were acquired (sampling rate: 2 kHz; 

resolution: 12 bit) and processed by the multichannel 

recording system, Step32, Medical Technology, Italy. 

For each subject, three foot-switches (size: 10 × 10 × 

0.5 mm; activation force: 3 N) were attached beneath 

heel, first and fifth metatarsal head of each foot. Two 

electro-goniometers were attached to the lateral side of 

each lower limb for measuring knee-joint angles and 

ankle-joint angles in the sagittal plane. sEMG signals 

were detected with single-differential sEMG probes 

with fixed geometry constituted by Ag/Ag-Cl disks 

(size: 7 × 27 × 19 mm; inter-electrode distance: 12 mm, 

gain: 1000, high-pass filter: 10 Hz, input impedance > 

1.5 GΩ, CMRR > 126 dB, input referred noise ≤ 1 

μVrms). sEMG signals were further amplified and low-

pass filtered (450 Hz) by the recording system. An 

overall gain, ranging from 1000 to 50,000, could be 

chosen to suit the need of the specific muscle observed 

[9]. Before positioning the electrodes, the skin was 

shaved, cleansed with abrasive paste and wet with a 

soaked cloth. To assure proper electrode-skin contact, 

electrodes were dressed with highly-conductive gel. 

Electrodes were applied over EDB for each foot by a 

licensed physical therapist, following the SENIAM 

recommendations for electrode location and orientation 

[12]. Participant set-up is shown in Fig. 2. Then, 
subjects were asked to walk barefoot overground for 4 

min at natural speed and cadence, back and forth over a 

12-m hallway. Natural pace was chosen because 

walking at a comfortable speed improves the 

repeatability of EMG data, while variability increases 

when subjects are asked to walk abnormally.  

Goniometric signals were low-pass filtered (FIR 

filter, 100 taps, cut-off frequency 15 Hz) [2]. Knee and 

ankle angles in the sagittal plane along with sequences 

and durations of gait phases derived by basographic 

signal, were used by a multivariate statistical filter, to 

detect outlier cycles like those relative to deceleration, 

reversing, and acceleration. Footswitch signals were 

debounced, converted to four levels, heel contact (H), 

flat foot contact (F), push-off (P), swing (S), and 

processed to segment and classify the different gait 

cycles. Cycles with improper sequences of gait phases 

(i.e. different from H–F–P–S sequence), not 

corresponding to straight walking and with abnormal 

timing and knee angles, with respect to a mean value 

computed on each single subject, were discarded [13].  

sEMG signals were high-pass filtered (FIR filter, 100 

taps, cut-off frequency of 20 Hz) and processed by a 

double-threshold statistical detector for the assessment 

of muscle activation intervals [14]. 

 

 
 

Figure 2. Participant set-up 

 

 

2.3 Statistical Gait Analysis  

 
Statistical gait analysis (SGA) [13] is a recent 

methodology, which performs a statistical 

characterization of gait by averaging spatial-temporal 

and sEMG-based parameters over a high number 

(hundreds) of strides, during the same walking trial. 

SGA relies on the fact that the number of muscle 

activations is cycle dependent, so that averaging should 

be performed only over onset/offset instants of cycles 

including the same number of activations, i.e. belonging 

to the same activation modality. Activation modality is 

defined as the number of times a muscle activates 

during a single gait cycle (n-activation modality 

consists of n activation intervals for the considered 

muscle, during a single gait cycle).  

Mean activation intervals (normalized with respect 

to gait cycle) for each activation modality are achieved, 

according to the following steps. First, muscle 

activation intervals relative to each gait cycle are 

identified, computing muscle onset/offset instants in 

temporal space [14]. Then, muscle activations are 

grouped according to their modality. Eventually, the 

onset/offset time instants of each activation modality 

are averaged over the eight subjects. Averaged 

onset/offset percentage time instants are normalized 

with respect to gait cycle to provide mean activation 

intervals in percentage of gait cycle. SGA was 

performed by the Step32 system. 
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3 Results 

For each subject, a mean (± standard deviation, SD) 

of 265.11 ± 30.4 strides has been considered. From the 

total of 3712 strides considered, 339 strides (9.1% of 

total strides) have been removed from the analysis 

because they did not follow the H-F-P-S foot-switch 

pattern and/or were outlier cycles relative to 

deceleration, reversing, and acceleration. The mean 

results are reported with data from right and left lower 

limbs considered together.  

The SGA of myoelectric signals indicated that 

muscles show different numbers of activation intervals 

in different strides of the same walking session. A 

graphic representation of the patterns of the three main 

EDB activation modalities is showed in Fig. 3. The 

most recurrent modality of activation for EDB (Fig. 3) 

consists of two activations (2-activation modality, 

EBD2), observed in 42.6±12.4% of total strides; the 

first occurs in early mid-stance (from 8.25±7.0 to 

50.3±15.0 % of gait cycle), and the second activation in 

swing phase, from 73.8±13.8% to 91.5±7.1% of GC. 

Instead, in 30.8±19.6% of total strides a 1-activation 

modality was detected (EDB1); this activation modality 

was observed from 17.5±14.7% to 79.0±15.3% of GC.  

In a further 20.3±12.9% of total strides, three 

activations were detected for EDB (EDB3): from 4±3.6 

to 36.6±18.8% of GC, from 52.0±13.6 to 66.4±8.7% of 

GC and during swing phase from 83.8±8.3 to 95.0±4.7 

% of GC. The 4 and 5 activation modality for EDB 

showed a large variability and a not significant 

percentage; thus, they are not considered in the present 

analysis. Considering the three main modalities of 

activation all together, a graphic representation of a 

single pattern for sEMG activity of the EDB muscle is 

reported in Fig. 4.  

 

4 Discussion and Conclusions  

The present study was designed to quantitatively 

assess the recruitment of EDB in healthy children, 

during walking at self-selected speed and cadence. The 

analysis showed that EDB muscle adopts different 

modalities in number of activations, in occurrence 

frequency [15], and in timing of signal onset/offset, in 

different strides of the same walking trial. Similar 

findings on muscle-activity variability were reported 

also for further ankle muscles in school-aged children 

[1-4] and in adults [16-18].  

Results showed that EDB activity pattern was 

observed mainly during the second half of the stance 

phase. In this phase, the EDB activity was detected in 

100% of the considered subjects (black area in Fig. 4). 

The activity in this percentage of the gait cycle (around 

30-55%) is recognized as the typical activation for EDB 

during normal walking [5]. In adult, the EDB 

recruitment during early mid-stance phase has been 

interpreted as the active participation of this intrinsic 

dorsal muscle of the foot in controlling midtarsal 

dorsiflexion to regulate shock absorbing mechanism [3]. 

Moreover, advancing the body, the action of EDB is 

suggested to be present to control mid foot stability 
developing muscle tension for weight-bearing [5]. 

Considering that the recruitment of EDB reported by 

the present study is comparable with what reported in 

adults, the previous physiological considerations could 

be reasonably extended to children.  

 

 
 

Figure 3. Mean values of EDB activation intervals vs. 

percentage of gait cycle. EDB activation intervals are 

reported separately for the modalities with 1, 2 and 3 

activations. Horizontal bars are gray-level coded, 

according to the number of subjects where a certain 

condition is observed. Black: condition observed for all 

subjects. White: condition never met. H, F, P and S 

phases are delimited by dashed grey vertical lines. 

 

 

Figure 4. EDB activations over the population, as 

percentage of gait cycle, considering the three main 

modalities of activation all together. Horizontal bars are 

gray-level coded, according to the number of subjects 

where a certain condition is observed. Black: condition 

observed for all subjects in every activation modality. 

White: condition never met. H, F, P S phases are 

delimited by dashed light-gray vertical lines. 

 

 

A further region of EDB activity was detected in 

swing phase. This activity occurs in a minor number of 

subjects (50%) as depicted by the grey area reported in 

Fig. 4, around the 85% of gait cycle. To our knowledge, 

this activity has never been reported neither in children 

nor in adults. An explanation of the recruitment of EDB 

in this phase of gait cycle could be related to the 

activity of muscle for the correct positioning of the foot, 
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in preparation of the following heel strike. However, 

further studies are evoked to deepen the physiological 

interpretation of the EDB recruitment in swing. 

In conclusion, the ‘‘normality’’ pattern, identified in 

the present study, represents the first attempt for the 

development of a reference frame for dynamic sEMG 

activity of EDB in healthy children. Although further 

investigations are needed, these findings have the merit 

to provide novel data on the variability of the role of 

EDB during child walking, allowing a deeper insight in 

the physiological mechanisms that regulate ankle-foot 

stability. Thus, it can be useful for comparison between 

normal and pathological walking in the clinical context 

for designing future gait studies and could be valuable 

in order to give a further insight in the process of 

maturation of gait. 
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Intermittent Control Properties of Car Following:
Driving Simulator Experiment

Ihor Lubashevsky, Hiromasa Ando

Computer Science Division, University of Aizu, Japan

Abstract

Characteristic features of human actions in car
driving within the car-following setup are studied us-
ing TORCS car-driving simulator. Eight subjects
participated in these experiments were instructed to
drive a virtual car without overtaking and not losing
sight of the lead car in any convenient style. The
lead car was driven by computer at a fixed speed.
As a main result, we draw a conclusion that human
behavior in car driving should be categorized as
a generalized intermittent control with noise-driven
activation. Besides, we hypothesize that the ex-
tended phase space required for modeling human
actions in car driving has to comprise four phase
variables: the headway distance, the velocity of car,
its acceleration, and the car jerk.

Keywords Human control, Intermittency, Car-driving

1 Introduction

According to modern point of view, human actions in
governing unstable mechanical systems should be cate-
gorized as discontinuous (intermittent) control which re-
peatedly switches off and on (for a review see, e.g., [1]).
As a result, the control process takes the form of a se-
quence of alternate phases of passive and active behavior
with the event-driven transitions between them.

Previously, based on the experimental data on the bal-
ancing of overdamped stick we proposed a novel mecha-
nism of noise-driven control activation which argues for
substantially probabilistic scenario of these phase transi-
tions [2]. As its characteristic features, the distribution
function of the main control variable has to possess a
sharp peak at the origin and this variable itself has to be
an essential component of the extended phase describing
human control.

Based on preliminary experiments, we suppose that in
car-driving the intermittency of human control should be
pronounced and affect the motion dynamics substantially.
The purpose of the present work is to elucidate how the
basic properties of human intermittent control manifest
themselves in the characteristics of car-driving.

Figure 1: Screenshot of car-following experiments. The
car ahead (in blue) is driven by computer at a fixed speed.

2 Car Driving Simulator

In the conducted experiments we explored a car-
driving simulator created based on the open source en-
gine TORCS [3]. The used track has a rectangular form
(with smoothed corners) whose longest straight parts are
of length about 70 km. One trial of experiments is im-
plemented via driving along one of the longest parts. The
width of the track road is 15 meters. The roadside of the
track includes a special pattern of stripes enabling a sub-
ject to get feeling of the current speed (Fig. 1).

The set of experiments consisted of trials where the
lead car speed was set equal to V = 60 km/h, 80 km/h,
100 km/h, and 120 km/h. Each of these trials was contin-
ued for 60 minutes totally with possible breaks caused,
e.g., by the necessity to move from one long-distant track
to the other. Eight male students of age around 22-25
were involved in these experiments.

3 Results and Discussion

In the car-following, drivers can control the car dynam-
ics only via changing the position of the accelerator or
brake pedals. Time variations in the headway distance,
velocity, acceleration, etc. are determined by the car me-
chanics and the pedal position. Therefore, at the first step,
we analyzed the corresponding time patterns of (i) the
pedal positions and (ii) their time derivatives. There are
at least two reasons for including the pedal position time
derivative into the list of the main characteristics of driver
actions. First, turning to our causal experience it is clear
that drivers focus their attention on the car arrangement
in traffic flow, the current velocity and acceleration rather
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than on the particular position of the pressed pedal. So
the pedal position on its own cannot be the main control
parameter. However, after making decision on correct-
ing the current state of car motion a driver consciously
(or automatically based on the gained experience) slow or
fast pushes or releases the corresponding pedal. In other
words, the rate of pedal movement can be a quantity con-
trolled by the driver’s active behavior. Second, the main
parameter that is controlled directly by a human opera-
tor and, in its turn, quantifies the operative actions has to
exhibit a special characteristic property. Namely its dis-
tribution function has to possess a sharp peak at the origin
[2]. It means that during the passive phase where the op-
erator control is suspended this quantity does not change.
In accordance with the obtained results, the pedal posi-
tion time derivative is this type variable.

Figure 2 (upper row) shows typical forms of the pedal
position time patterns found in the conducted experi-
ments. The time pattern classified as style 1 demonstrates
the strategy of car driving when a driver pushes the accel-
erator pedal for a relatively short time then release it also
for a short time and so on. This style enables a driver
to keep up the desired velocity and headway without the
precise control over the pedal position just changing the
duration of pressing or releasing the pedal. The time pat-
tern classified as style 2 demonstrates the opposite strat-
egy of car-driving, when a driver is able to keep up the
required pedal position for a relatively long time inter-
val. The found third style may be classified as a certain
mixture of styles 1 and 2. The mixed style is worthy of
individual investigation and is not discussed here.

Figure 2 (lower two rows) shows the typical form of
the distribution of the pedal position and its time deriva-
tive for styles 1 and 2. As seen, the distribution of the
pedal position, the p-distribution, are completely differ-
ent, as should be expected. For style 1 the p-values are
scattered rather widely in the possible acceleration inter-
val (0,1) with a non-pronounced maximum at the required
value pV for the steady-state motion. For style 2 the p-
distribution is located near the corresponding value pV
and has the form of the Laplace distribution. The distri-
butions of the pedal position time derivatives, the dp/dt-
distributions, differ for styles 1 and 2 in the form and
scales. Nevertheless, all the found dp/dt-distributions
possess a common feature, it is a sharp peak at the ori-
gin. We relate the appearance of this peak to the basic
properties of human intermittent control.

The statistical properties of the other characteristics of
the car dynamics, namely, the headway distance between
the cars, their relative velocity, the following car accel-
eration, and the jerk, i.e., the time derivative of the car
acceleration are shown in Fig. 3 for styles 1 and 2. The
headway distribution and the relative velocity distribution
are similar in form with each other as well as the corre-
sponding distributions obtained for the real traffic, see,
e.g., [4, 5, 6, 7].

For style 2 the difference between the distribution of
the car acceleration and jerk is not so clear because the
peak of acceleration distribution and that of the jerk dis-

tribution look rather similar; both of them are approxi-
mately of the same thickness and located at the origin.
So, appealing to these plots it is difficult to recognized
which variable—the acceleration or the jerk—causes the
appearance of the peak of the other variable. However,
additional analysis demonstrated that the jerk distribu-
tions peak is closer to the power law in form whereas
that of the acceleration distribution is not so pronounced.
It allows us to attribute the leading role the car jerk and
regard it as the phase variable of the car dynamics.

The drawn conclusion about the leading role of the car
jerk is also justified by time patterns of the car accelera-
tion and jerk shown in Fig. 3 (right column). As seen,
only the jerk demonstrates the time pattern typical for
the human intermittent control; they are a sequence of
alternate phases of subject’s passive and active behavior,
where the passive phase corresponds to a certain fixed
parameter and the active phase fragments show dynamic
variation of this parameter.

Besides, studying the distributions in the phase planes
“acceleration–pedal position” and “jerk–pedal position
derivative” we demonstrates the relationship between the
variables of the car dynamics and human actions. Namely
based on the data for both the styles 1 and 2 we can write
the relationship between the pedal position p, the car ac-
celeration a and the jerk

j =
da

dt

in the form
τcj = κp− a , (1)

where the time scale τc and the coefficient κ should char-
acterize the mechanical characteristics of car. The exis-
tence of the transient term—the right hand side of equa-
tion (1)—is found in the data for some subjects. Never-
theless, it should be a minor effect and the steady-state
approximation of relationship (1)

a = κp (2)

can be used in modeling the car-following.
In this way we get the relationship between the pedal

position time derivative and the jerk

j = κ
dp

dt
, (3)

which explains why the car jerk can be treated as the main
control parameter.

In conclusion, the obtained results for the car-
following enable us to state that:

• The car-driving exhibits characteristic features of
human intermittent control. Namely, the subject ac-
tions in controlling the car motion form a sequence
of alternate phases when the subjects kept the accel-
erator pedal fixed (passive phase) or changed it po-
sition to correct the current state of motion (active
phase).

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

133



0 5 10 15 20 25 30
elapsed time [min]

1.0

0.5

0.0

0.5

1.0

pe
da

l p
os

iti
on

 [%
 o

f m
ax

im
al

 sh
ift

] style 1

0 5 10 15 20 25 30
elapsed time [min]

1.0

0.5

0.0

0.5

1.0

pe
da

l p
os

iti
on

 [%
 o

f m
ax

im
al

 sh
ift

] style 2

10-3

10-2

10-1

100

101

di
st

ri
bu

ito
n 

of
 p

1.0 0.5 0.0 0.5 1.0
pedal postion p∈ [− 1, 1]

10-3

10-2

10-1

100

101

di
st

ri
bu

ito
n 

of
 p

1.0 0.5 0.0 0.5 1.0
pedal postion p∈ [− 1, 1]

100

101

102

103

di
st

ri
bu

tio
n 

of
 d
p
/d
t

0.06 0.04 0.02 0.00 0.02 0.04 0.06
dp/dt [dimensionless units]

100

101

102

103

di
st

ri
bu

tio
n 

of
 d
p
/d
t

0.06 0.04 0.02 0.00 0.02 0.04 0.06
dp/dt [dimensionless units]

10-3

10-2

10-1

100

101

di
st

ri
bu

ito
n 

of
 p

1.0 0.5 0.0 0.5 1.0
pedal postion p∈ [− 1, 1]

10-3

10-2

10-1

100

101

di
st

ri
bu

ito
n 

of
 p

1.0 0.5 0.0 0.5 1.0
pedal postion p∈ [− 1, 1]

10-2

10-1

100

101

102

103

di
st

ri
bu

tio
n 

of
 d
p
/d
t

0.04 0.02 0.00 0.02 0.04
dp/dt [dimensionless units]

10-2

10-1

100

101

102

103

di
st

ri
bu

tio
n 

of
 d
p
/d
t

0.04 0.02 0.00 0.02 0.04
dp/dt [dimensionless units]

Figure 2: Characteristic forms of the pedal position time patterns and the distributions of the pedal position and its time
derivative for styles 1 and 2.

• The distribution of the car jerk (directly related to
the pedal position time derivative) exhibits sharp
peak at the origin, which is a typical property of the
main control parameter in human intermittent con-
trol.

• By virtue of the previous statement, we come to the
conclusion that the four-dimensional phase space—
comprising the headway distance, the car velocity,
its acceleration and jerk—is required to describe the
car dynamics governed by a human driver. In this
collection of phase variable the jerk can be replaced
by the time derivative pedal position which explic-
itly reflects the driver actions.
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Figure 3: Characteristic forms of the distributions of the headway distance, the relative velocity, the car acceleration and
jerk as well as the time patterns of the car acceleration and jerk.
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Abstract 

Disturbances in maternal circadian rhythms are 
indicated as substantial risk factors for maternal 
depression. Such disturbances are thought to be 
attributed not only to intrinsic maternal factors but 
also to interacting factors with her baby’s rhythms. 
Therefore, to study the relationships between 
maternal circadian rhythms and subjective 
symptoms (e.g. depressive mood), the influences 
from infants should be considered. In this study, 
we conducted longitudinal recordings of maternal 
symptoms of fatigue, stress and mood states by 
ecological momentary assessment, together with 
simultaneous measurements of mother and infant 
physical activity data in daily life (N = 20; >1 week). 
The mother and infant circadian components in the 
physical activity data were extracted by ensemble 
bi-variate empirical mode decomposition, and their 
instantaneous phases then were obtained by the 
Hilbert transformation. The relationships between 
diurnal maternal mental health symptoms and 
phase differences of mother-infant circadian 
rhythms (a synchronization index) were evaluated 
using multilevel models. Fatigue and depressive 
mood scores showed positive and significant 
correlation (p < 0.05) with the increase of phase 
differences. These findings suggest the possibility 
that modifications of maternal and/or infant 
circadian rhythms might alleviate fatigue and 
improve mood states during the childrearing period. 

Keywords circadian rhythm, ecological momentary 

assessment, subjective symptoms, physical activity, 
emprical mode decomposition

1 Introduction 

Disturbances in maternal circadian rhythms, especially 

sleep-wake patterns, are known to be harmful for 

maternal mental health [1]. Thus, the management of 

maternal rhythms is of great importance for the 

prevention of mental disorders during the postpartum 

period.  

A variety of studies on maternal rhythms, including 

research about sleep-wake patterns or sleep 

disturbances, have demonstrated their considerable 

relations with maternal mental health, together with 

their associations with the development of postpartum 

depression [2, 3]. However, these studies only focused 

on maternal rhythms and did not pay attention to infant 

rhythms, which might be an important determinant of 

maternal rhythms. On the other hand, infant rhythms are 

also influenced by maternal rhythms though parenting 

behaviors and other social activities. Therefore, to study 

the relationships between maternal rhythms and 

maternal symptoms of fatigue, stress and mood states 

(hereafter referred to as maternal mental health 

symptoms), mother-infant interactions should be 

considered. 

In this study, we hypothesized that decreased 

synchronization of maternal-infant circadian rhythms, 

specifically the increase of their phase differences, is 

associated with the worsening of maternal mental health 

symptoms. To test this, we conducted longitudinal 

recordings of maternal mental health symptoms by 

Ecological Momentary Assessment (EMA) [4-6], 

together with simultaneous measurements of mother 

and infant physical activity data in daily life.  

Historically, cosinor-based or periodgram 

techniques have been widely applied to physical 

activity data as a tool to investigate circadian rhythms 

[7, 8]. However, these methods cannot fully deal with 

mother-infant interactions (e.g. carrying, or hugging 

behaviors), affecting the amount and/or patterns of their 

physical activity. Therefore, we adopted bi-variate 

empirical mode decomposition (EMD), which can 

decompose a bi-variate signal into oscillatory 

components at multiple timescales considering their 

mutual dependences. 

We show that bi-variate EMD can successfully 

extract mother and infant circadian components from 

the physical activity data, and further demonstrate that 

the increase of phase differences between mother and 

infant circadian components has a significant 
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relationship with the worsening of maternal mental 

health symptoms. 

2 Methods 

Twenty healthy mother-infant pairs [mothers: 33.4 ± 

4.4 (mean ± SD) years; infants: 12 males/8 females, 7.0 

± 2.3 months] participated in this study. All mothers 

were requested to record their subjective mental health 

symptoms during the study period (> one week). 

Physical activity was also measured from mothers and 

their infants. The procedures are summarized in the 

following sub-sections.  

2.1 Assessment of subjective symptoms 

Ecological momentary assessment (EMA) [4, 5] was 

adopted to examine momentary mental health 

symptoms in mothers. This approach allows researchers 

to address subjects’ behavior, psychological states, and 

physiological reactions at multiple time points as they 

are experienced in daily life. In this study, a custom-

made EMA Android smartphone application was used 

to record momentary symptoms (Fig. 1(a)). 

Mothers were instructed to complete EMA 

questionnaires at randomly selected times within ± 10 

min of pre-scheduled times (10:00, 14:00, and 18:00) 

during the study period. They were also asked to record 

the EMA questionnaires when they woke up and before 

they went to bed. 

The EMA questionnaires rated maternal fatigue 

intensities, stress levels and mood states by using a 

visual analog scale from 0 to 100 displayed on the 

smartphone screen (Fig. 1(a)). Mood states, specifically 

depressive mood and anxiety (total depression and total 

anxiety, respectively), were scored using the Depression 

and Anxiety Mood Scale (DAMS) [6, 9, 10] (Fig. 1(c)). 

2.2 Assessment of physical activity 

A watch-type activity monitor (Actigraph; 

Ambulatory Monitors Inc., Ardsley, NY, USA) was 

used for continuous and simultaneous recordings of 

maternal and infant physical activity. This device is 

equipped with a uni-axial piezo-electric accelerometer 

capable of detecting small changes in bodily 

acceleration (≥0.01 G/rad/s), which makes it possible to 

register even slight movements in daily life. Throughout 

the study period, all the mothers wore the device on the 

wrist of their respective non-dominant hand, and the 

infants wore it on their left ankle (Fig.1(b)). Zero-

crossing acceleration counts were accumulated for 

every minute. 

2.3 Data analysis 

2.3.1 Empirical mode decomposition 

EMD is a data-driven multiscale time-frequency 

analysis that adaptively decomposes a non-stationary 

signal into oscillatory modes modulated in both 

amplitude and frequency [11]. The oscillatory modes 

embedded in a given signal are named intrinsic mode 

functions (IMF) and satisfy the following two 

conditions: (a) the number of extrema and the number 

of zero crossings in the signal must either equal or 

differ at most by one; and (2) the mean value of the 

envelopes defined by the local maxima and minima of 

the signal are equal to zero at any time. With these 

definitions, in practice, the extracted IMFs are supposed 

to be narrow band signals without complex riding 

waves, and also symmetric around zero. 

2.3.2 Bi-variate empirical mode 

decomposition 

Bi-variate EMD [12, 13] is a natural extension of the 

basic EMD making it possible to conduct a joint 

analysis of bi-variate oscillatory components included 

in bi-variate signals (Fig. 2). In this extension, the bi-

variate signal is dealt with as a complex-valued signal 

in which one signal is the real part and another is the 

imaginary part, respectively. Then, decomposition is 

conducted on both parts simultaneously considering 

their mutual dependencies [14]. Intuitively, basic EMD 

separates faster oscillations from slower oscillations, 

while bi-variate EMD separates rapid rotations from 

slower ones embedded in the trajectory on a complex 

plane12. In this study, we considered the mother and 

infant physical activity data as bi-variate signals.  

2.3.3 Extraction of circadian component 

In order to identify the circadian component from the 

extracted IMFs, the mean instantaneous frequency (i.e. 

period) was calculated by using the Hilbert 

transformation. In this study, the IMF corresponding to 

the circadian component was identified by searching for 

the IMF whose period is closest to 24 hours (red curves 

 
 

Figure 1: (a) Smartphon EMA system and (b) activity 

monitors. (c) An example of the data. 
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in Fig. 2). 

The mode mixing problem, the dispersion of very 

similar oscillations into different modes, is one of the 

major drawbacks of EMD [15, 16]. To overcome this 

problem, a noise assisted technique, named ensemble 

EMD, has been proposed [15, 16]. The idea of 

ensemble EMD relies on averaging the modes obtained 

by EMD applied to several realizations of Gaussian 

white noise added to the original signal. The addition of 

the noise can well solve the problem by populating the 

whole time-frequency space uniformly with the 

constituting components of different scales separated by 

the filter bank properties of EMD.  

In this study, we generated 100 samples for each 

mother-infant dataset by adding independent noise 

series with zero mean and a variance of 0.2 times that of 

the data, and then calculated the ensemble average of 

the identified circadian components for mother and 

infant data. The instantaneous phases were evaluated 

from the averaged circadian components using the 

Hilbert transformation. The absolute values of mother-

infant phase differences ( )|  |tP were calculated as 

follows; 

( ) ( ) ( )| | |   - |t mother t infant tP P P ,   (1) 

where
( )  mother tP and ( )  infant tP  is mother and infant 

instantaneous phases, respectively (Fig. 3).  

2.4 Statistics 

EMA recordings were conducted at multiple times 

during the study period, leading to a hierarchical 

structure of the data set. Therefore, multilevel modeling 

[17-19], which is an extension of traditional regression 

models making it possible to deal with within- and 

between-individual variances and also both random and 

fixed effects together in the same model, was used.  

To test the relationships between momentary 

symptoms and corresponding mother-infant phase 

differences, the following multilevel model was 

evaluated;  

00 10 0|    |ij ij i ijsymptom P       ,   (2) 

where  | |ijP is the absolute value of the phase 

difference of j-th recording for the i-th subject.  

SAS Proc Mixed (SAS 9.2, SAS Institute Inc., Cary, 

NC) was used for all statistical tests. A p- value of less 

than 0.05 was considered significant. 

3 Results 

Figure 3(a) shows an example of circadian 

components extracted by ensemble bi-variate EMD. 

The method successful identified circadian components 

from all maternal and infant physical activity data (the 

mean periods of extracted circadian components were 

23.97±1.10 hrs for mothers, and 23.94 ± 0.86 hrs for 

infants). Furthermore, the dynamical changes of 

mother-infant phase differences, which cannot be 

adequately accessed by the traditional cosinor method, 

were also evaluated (Fig. 3(b)). 

Table 1 summarizes the results of diurnal 

associations between the corresponding instantaneous 

phase differences and maternal mental health symptoms. 

Fatigue levels and depressive mood scores were 

concurrently associated with the phase differences, 

while stress levels tended to increase with the widening 

of phase differences (γ10 = 8.4 ± 4.2, p = 0.05). These 

results indicate the presence of the covariations between 

maternal mental health symptoms and phase differences 

in their diurnal variations. For anxiety, we did not find 

any significant associations. 

4 Conclusions 

This study has the following methodological 

advantages: 1) the first use of the EMA approach to 

assess the diurnal changes in maternal mental health 

 
 

Figure 2: IMFs derived by the bi-variate EMD from (a) maternal and (b) infant physical activity data. 
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symptoms during the childrearing period, 2) an 

application of the ensemble bi-variate EMD to derive 

circadian rhythms from physical activity data by taking 

mother-infant interactions into consideration. 

In this study, we demonstrated that the 

synchronization of the mother-infant circadian rhythms 

is associated with diurnal maternal symptoms of fatigue 

and depression. This suggests that appropriate 

modifications of mother and/or infant rhythms may lead 

to the improvement of maternal mental health 

symptoms. 
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 diurnal associations 

 mean (SE) t-value p-value 

fatigue  

intercept: γ00 39.7(3.8) 10.5 < 0.0001 

coefficient: γ10 17.9(5.3) 3.4 <0.01 

stress   

intercept: γ00 18.6(2.9) 6.3 < 0.0001 

coefficient: γ10 8.4(4.2) 2.0 0.05 

total anxiety   

intercept: γ00 11.9(1.9) 6.3 < 0.0001 

coefficient: γ10 -0.8(1.8) -0.4 0.66 

total depression   

intercept: γ00 30.9(1.7) 18.3 < 0.0001 

coefficient: γ10 6.5(2.6) 2.5 0.01 

Table 1: Diurnal associations between self-reported 

symptoms and phase differences. 

 
 

Figure 3: (a) The circadian components extracted from 

mother and infant physical activity (a). The 

corresponding instantaneous phases (b) and their 

absolute differences (c). 
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Abstract 

Psychological factors have been reported to have 
influence on eating habits in patients with diabetes. 
However, previous studies used a questionnaire to 
investigate the association, which suffers from 
recall bias. To overcome the disadvantage, 
ecological momentary assessment (EMA) has 
been used to record subjective symptoms and 
behavior in subjects’ daily lives. Therefore, the aim 
of the present study was to investigate the 
influence of preceding psychological factors on 
calorie intake using computerized EMA for six 
months. The participants were nine outpatients 
with type 2 diabetes, aged 34-72. They were 
instructed to use the personal digital assistance as 
an electronic diary for six months to record 
subjective symptoms such as psychological stress, 
anxiety, and depressive mood, and food and drink 
that they had. The association between preceding 
psychological factors and calorie intake within 5 
hours was investigated using multilevel modeling. 
With regard to snacks, preceding psychological 
stress was positively associated with calorie intake 
while preceding psychological stress, anxiety, and 
depressive mood were negatively associated with 
calorie intakes regarding regular meals. In 
conclusion, preceding psychological factors could 
influence calorie intake in patients with type 2 
diabetes, which may lead to developing 
psychological intervention to prevent overeating. 

Keywords Ecological momentary assessment, type 2
diabetes, electronic food diary, psychological factors, 
multilevel modeling

1 Introduction 

Psychological factors such as anxiety and depressive 

mood has been reported to have influence on eating 
habits in patients with life-style diseases such as 
diabetes, which could raise risks of cardiovascular 
diseases [1]. Many studies on the influence of 
psychological factors on eating habits used a 
questionnaire, which could suffer from recall bias [2]. 
To overcome the disadvantage, ecological momentary 
assessment (EMA), which avoids recall bias, has been 
used in the area of behavioral medicine to record 
subjective symptoms and behavior in subjects’ daily 
lives.  

There have been some previous studies to 
investigate the association between psychosocial factors 
and food intake using EMA [3] [4] [5] [6]. However, 
there were methodological problems in the previous 
studies due to using paper-and-pencil diaries [7] or only 
two-day duration. Stone et al. revealed that patients 
completed only 11% of their symptom records on the 
scheduled time [7]. 

Therefore, the aim of the present study was to 
investigate the influence of preceding psychological 
factors on calorie intake quantitatively using 
computerized EMA for six months. 

2 Methods 

2.1 Participants and Procedure 

The study protocol was approved by the ethical 
committee of Graduate School of Medicine, The 
University of Tokyo. The participants in this study were 
part of another study [8], and nine outpatients with type 
2 diabetes diagnosed according to the current criteria of 
the Japan Diabetes Society [9] (three men; median age 
= 49 years, range = 34 to 72). Inclusion criteria were 
age ≥20 and outpatients with type 2 diabetes at the 
University of Tokyo Hospital. Participants were 
excluded if they had HbA1c≥8.4%, had any active 
mental disorder, followed a restrictive diet with protein 
≤0.5 g/kg/day or salt ≤5 g/day due to another disease, 
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had cognitive impairment, or had severe complications 
that interfered with self-care activities. After providing 
written informed consent, participants were instructed 
to record daily dietary intake using the PDA-based food 
diary, SELFOOD [10] and to record mood states such 
as anxiety and depression to a personal digital assistant 
(PDA) (WS020SH, Sharp Corp, Osaka, Japan, 135g, 
50x116x17.9 mm, Windows Mobile 6.1), which was 
equipped with a 3.0-in color liquid crystal display and a 
touch panel manipulated by a finger. They were asked 
to record as soon as possible after eating for 6 
consecutive months. 

2.2 Dietary Intake 

We developed an electronic food diary, 
“SELFOOD”, implemented into PDA), and the 
accuracy of it has been confirmed [10]. SELFOOD was 
equipped with a reference database with 423 color 
photographs of food and drink items, and also allowed 
patients to add their own meals and recipes to the 
database if their nutrient information was given.  

2.3 Momentary Psychological Stress and 
Mood State 

To record psychological stress, anxiety, and 
depressive mood, the PDAs were used as electronic 
diaries [11]. The subjects were instructed on the use of 
the device and given manuals before the beginning of 
the study period. 

The subjects hold the PDAs for six consecutive 
months. Signal-contingent recordings were defined as 
recordings that were prompted with a beep as a signal 
[2], and they were programmed to occur randomly 
within an interval of 30 min around 10:00, and 15:00. If 
the subjects did not enter a recording when the 
computer beeped, they were allowed to postpone input 
for 30 min. Recordings not made within 30 min were 
cancelled. The subjects were also asked to record their 
psychological stress, anxiety, and depressive mood 
when they woke up and when they went to bed by 
choosing “waking up” or “going to bed” from the menu. 
After selecting a “going to bed” recording, the 
computers suspended the signal-contingent recordings 
until a “waking up” recording was selected to avoid 
sleep disturbance. Signal-contingent recordings and 
recordings when waking up and going to bed were 
treated as scheduled recordings. Momentary 
psychological stress, anxiety, and depressive mood 
were rated with a visual analog scale (VAS) that ranged 
from 0 to 100, which was displayed on the screen. 

2.4 Statistical Analysis 

Multilevel modeling was used to investigate 
preceding psychological factors on dietary intake for 
statistical analyses because the dataset in this study had 
a nested structure in which a number of recordings 
belonged to each participant. Pairs of preceding 
psychological factors and dietary intake were lagged in 

the ranges of −5 to 0 h [12]. The level of significance 
was set at 0.05. SAS Proc Mixed (SAS 9.3, SAS 
Institute Inc., Cary, NC, USA) were used. Each dietary 
intake recordings were paired with preceding 
momentary recordings of psychological stress and the 
mood states for each patient. Dietary intake was treated 
as the dependent variable. Momentary psychological 
stress, anxiety, and depressive mood were separately 
modeled as the independent variable either as a fixed or 
random effect. Goodness of fit was compared to 
determine the best-fit model with a −2 log likelihood 
function and χ2 test when one model was nested in the 
other; otherwise, AIC was used. The level-1 (within-
individual level) intercept was modeled as a random 
effect. In all analyses, the variance–covariance matrix 
(G matrix) was modeled as unstructured. 

3 Results 

3.1 Recording Profiles  

For all of nine subjects, there were 1353 days of 
recordings. The compliance rate for regular dietary 
intake was 77.2%, while the compliance rate of signal-
contingent recordings of psychological factors was 
42.8%. With regard to pairing dietary intake and 
preceding psychological factors, 1517 of 3667 dietary 
intakes could be paired with preceding psychological 
factors. 

3.2 Preceding Psychological Stress and 
Dietary calorie Intake  

Preceding psychological stress was significantly 
positively associated with dietary intake for lunch and 
dinner, but negatively associated for snacks (Tab 1). 
The final model is as follows: 
 
Level 1 equation: 
 Yij = π0i + π1iCompanyij + π2iPlaceij + π3iStressij + εij. 
  (1) 
Level 2 equations: 
 π0i = γ00 + ζ0i (π0i = γ00 + +γ01TargetCali + ζ0i for dinner).
  (2) 
 π1i = γ10. (3) 
 π2i = γ20. (4) 
 π3i = γ30. (5) 

 
where Yij is each momentary calorie intake for the ith 
patient; Companyij is the corresponding accompanying 
person, which is alone or somebody; Placeij is the 
corresponding eating place, which is home, 
office/school, dining out, or other; Stressij is the 
corresponding preceding psychological stress; 
TargetCali is the target calorie for ith patient. γ00 is the 
average true value of mean calorie intake when all 
predictors are zero. π1i, π2i, and π3i is the individual i’s 
slopes representing the effects of accompanying 
person(s), eating place(s), and preceding psychological 
stress on momentary calorie intake respectively, and γ10, 
γ20, and γ30 are the average slopes. εij and ζ0i are 
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residuals at each level. Including ζ0i in the equation 
means that the intercept was modeled as random, which 
suggested that intercept could vary across individuals. 
The second level 2 equation include no residual, which 
means that the effects of accompanying person(s), 
eating place(s), and preceding psychological stress on 
momentary calorie intake were modeled as fixed effects. 

3.3 Preceding Anxiety and Dietary calorie 
Intake  

Preceding anxiety was significantly negatively 
associated with dietary intake only for breakfast (Table 
2). The final model is as follows: 
 
Level 1 equation: 
 Yij = π0i + π1iCompanyij + π2iPlaceij + π3iAnxietyij + εij. 
  (6) 
Level 2 equations: 
 π0i = γ00 + ζ0i. (7) 
 π1i =γ10. (8) 
 π2i =γ20. (9) 
 π3i =γ30. (10) 
 
where Yij is each momentary calorie intake for the ith 
patient; Companyij is the corresponding accompanying 
person, which is alone or somebody; Placeij is the 
corresponding eating place, which is home, 
office/school, dining out, or other; Anxietyij is the 
corresponding preceding anxiety. 

3.4 Preceding Depression and Dietary 
calorie Intake  

Preceding depressive mood was significantly 
negatively associated with dietary intake only for lunch 
(Tab 3). The final model is the same as the model for 
anxiety, in which Anxietyij is replaced with Depressionij. 

4 Conclusions 

Using computerized EMA for six months, 
significant within-individual relationships between 
preceding psychological factors and calorie intake 
within five hours were shown in patients with type 2 
diabetes. Although a causal relationship could not be 
established, it supports the possibility that 
psychological factors can influence calorie intake in 
patients with type 2 diabetes, which has not been 
investigated previously in the daily lives of the patients.  

 In the present study, the results showed that there 
were differences in the association between preceding 

Lunch Coefficient 
(standard error) F value P value 

Intercept: γ00 565.7(47.3)  < .0001 
Accompanyin
g person: γ10 

 F(1,7) 
=19.0 .0033 

Alone 446.8(35.6)   
Somebody 525.9(36.0)   

Place: γ20  F(3,10) 
=11.4 .0015 

Home 489.2(34.6)*   
Office/school 410.2(41.9)*   
Dining out 565.6(35.4)   
Other 480.5(45.1)   

Stress: γ30 -1.73(.44) F(1,467) 
=15.6 < .0001 

Dinner    
Intercept: γ00 -256.2(297.6)   .4179 
Accompanyin
g person: γ10 

 F(1,6) 
=5.6 .0562 

Alone 484.6(40.4)   
Somebody 548.5(37.5)   

Place: γ20  F(3,4) 
=12.3 .0174 

Home 577.6(30.4)   
Office/school 366.4(57.0)*#    
Dining out 684.2(44.5)   
Other 438.3(60.7)*   

Stress: γ30 -1.22(.51) F(1,385) 
=12.3 .0175 

Snacks    
Intercept: γ00 93.5(48.7)   .0961 
Accompanyin
g person: γ10 

 F(1,5) 
=7.36 .0422 

Alone 100.3(41.8)   
Somebody 154.9(42.0)   

Place: γ20  F(3,7) 
=6.62 .0188 

Home 158.1(41.1)   
Office/school 69.2(43.6)*#   
Dining out 189.2(49.6)   
Other 93.9(44.1)#   

Stress: γ30 1.25(.54) F(1,186) 
=5.36 .0216 

*: significant difference with “dining out” 
#: significant difference with “home” 
(p<0.05 for all using Tukey-Kramer’s correction). 
 
Table 1: Effect of preceding psychological stress on 
calorie intake for lunch, dinner and snacks 

Breakfast 
Coefficient 
(standard 
error) 

F value 
P value 

Intercept: γ00 596.2(50.6)  < .0001 
Accompanying 
person: γ10 

 F(1,4) 
=7.7 .0502 

Alone 419.0(35.8)   
Somebody 489.7(37.2)   

Place: γ20  F(3,5) 
=4.5 .0708 

Home 413.8(29.7)   
Office/school 375.9(66.2)   
Dining out 516.5(49.7)   
Other 511.3(51.5)   

Anxiety: γ30 -1.80(.76) F(1,395) 
=5.6 .0185 

 
Table 2: Effect of preceding anxiety on calorie 
intake for breakfast 
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psychological factors and calorie intake among the 
types of food. With regard to snacks, the present study 
showed that preceding psychological stress was 
positively associated with calorie intake. This result was 
consistent with the results of previous studies [3] [5] [6] 
although they had methodological problems as 
mentioned above. Because results in studies using 
different methods were consistent, psychological stress 
might increase calorie intake of snacks. Eating snacks 
may be used as a coping strategy for reducing 
psychological stress [13]. 

With regard to regular meals, preceding 
psychological stress, anxiety, and depressive mood 
were negatively associated with calorie intakes. The 
results in previous studies were not consistent regarding 
the association between psychological factors and 
calorie intake [3] [4]. Because all of the subjects were 
women in the two previous studies, it would be difficult 
to compare the results of the present study with those of 
the two previous studies. Therefore, future studies were 
necessary to confirm the association between preceding 
psychological factors and regular meals. 

Calorie intake was generally greater with person(s) 
than without anyone, and when eating out than when 
eating at home, controlling for psychological factors. 
Therefore, this result might confirm the results shown 
in a previous study that calorie intake increased in 
social situations [4].  

There were some limitations in the present study. 
First, the sample size was small. Second, most of the 
patients in the present study were men. Therefore, 
future studies with more patients including men and 
women were necessary. In addition, there was not a 
control group of healthy people. Therefore, it is not 
possible to expand the results in the present study to 
healthy people. 

In conclusion, preceding psychological factors could 
influence calorie intake in patients with type 2 diabetes, 
which may lead to developing psychological 
intervention to prevent overeating, such as noticing not 

to overeat the snack when recorded stress was high or 
display the list of coping strategies substituted for snack. 
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Lunch 
Coefficient 
(standard 
error) 

F value 
P value 

Intercept: γ00 564.6(43.3)  < .0001 
Accompanying 
person: γ10 

 F(1,7) 
=22.3 .0022 

Alone 442.8(29.9)   
Somebody 528.2(30.6)   

Place: γ20  F(3,10) 
=11.7 .0013 

Home 491.4(28.8)*   
Office/school 414.1(37.2)*   
Dining out 569.2(29.9)   
Other 467.2(40.7)   
Depression: 
γ30 

-3.64(.98) F(1,467) 
=13.7 .0002 

*: significant difference with “dining out” 
 (p<0.05 for all using Tukey-Kramer’s correction). 
 
Table 3: Effect of preceding depressive mood on 
calorie intake for lunch 
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Atomic Force Microscopy for Bladder Cancer
Detection

Eugene Demidenko, Igor Sokolov, John Seigne

Abstract – Cystoscopy is the traditional but unpleasant
and fairly expensive gold standard method for bladder cancer
detection. Although several less expensive and repetitive cytol-
ogy methods have been considered to analyze urine sample for
bladder cancer they all suffer from low sensitivity. We propose
a novel technique to analyze cells in urine using Atomic
Force Microscopy on the nanoscale. Results of statistical cell
discrimination based on 83 AFM cell images from urine
samples of 20 individuals are promising: we are able to
discriminate cells with 100% sensitivity and 100% specificity
using two characteristics of the AFM surface cell images.

Index Terms—Cell imaging, nanoscale, hierarchical data,
statistical discrimination

I. INTRODUCTION
Bladder cancer is the fourth most common cancer in men

and the ninth most common cancer in women [15]. The
current gold standard for evaluating patients with suspected
cancer, such as individuals with hematuria or back pain,
is white light cystoscopy (WLC) of bladder with or with-
out random biopsies. WLC illuminates the area within the
bladder, allowing evaluation of gross morphologic changes
and the extent of tumor mass. Subsequent biopsy analysis
by histopathologists grades and stages tumors according to
location, tissue stratification, nucleation, and assays for tumor-
specific antigens. Cystoscopy is not always accurate, with a
sensitivity in the range from 73% to 90% [16] and specificity
as low as 37% [22]. Most importantly, cystoscopy is invasive
and unpleasant procedure: no wander patients try to avoid
repetitive cystoscopy for bladder cancer monitoring to detect
early recurrence, typical for this kind of cancer. Much efforts
has been put into development of urine cytology test and
respective urine biomarkers [21], [1]. These tests typically
have high specificity but low sensitivity, as low as 50% [20],
[23], [3]. Although some biomarker tests, such as based on
hyaluronic acid and hyaluronidase [17] have high sensitivity
for high grade cancers they fail to detect low-grade cancers
[18]. Some urine exams are based on technologic methods,
such as photonics, �uorescence [13], [19] or more recent
RAMAN molecular imaging [10] to improve sensitivity but
fail in specificity. Current cytology tests have low sensitivity.
We suggest to improve the urine analysis by using the AFM
cell imaging that is noninvasive and repetitive, and may work
in conjunction with existing diagnostic techniques. In our

Eugene Demidenko is with Geisel School of Medcine at Dartmouth
at the Department of Biomedical Data Science and Mathematics, (eu-
gened@dartmouth.edu). Igor Sokolov is with Tufts University, Boston. John
Seigne is with Dartmouth Hitchcock Medical Center, USA.

previous very preliminary work we were able to discriminate
cancer and normal bladder epithelial cells using topography
and adhesion AFM maps. The goal of this proposal is to
collect sufficient preliminary data to demonstrate that AFM is
capable of discriminating between low and high grade tumors.
We believe that atomic force microscopy (AFM) may become
a clinically important technological modality for noninvasive
repetitive bladder cancer detection and monitoring because it
relies on the investigation of one cell at a time and therefore
one urine cell will be enough to identify the likelihood of
cancer.

II. METHODS

Urine samples have been collected at the Urology De-
partment, DHMC, Lebanon, New Hampshire, USA. Three
cohorts of patients have been targeted: (1) normals: patients
with bladder cancer symptoms, such as hematuria or frequent
and painful urination, but not confirmed bladder cancer, (2)
new bladder cancer: patients with symptoms and pathology-
confirmed cancer, (3) previously detected bladder cancer:
treated and follow up patients. Subjects will be identified in
the Urology clinic of DHMC who have undergone cystoscopy
and found to have a bladder tumor (any stage and grade). The
study was explained and those willing to participate have been
given an informative consent letter and a urine sample was
collected. The final pathological diagnosis (tumor histology,
stage and grade) as well as the results of urine cytology
and urinalysis were collected as well. No personal identity
information have been collected or linked to urine specimen.
Specifically, the collection protocol was as follows: (a) 50
mL of voided urine will be collected and transported to the
cytology laboratory within 15 minutes of collection, (b) The
urine will be divided into two 25 mL aliquots; one aliquot
will be fixed with alcohol, per standard DHMC procedure.
The 2nd aliquot will be fixed with Karnovsky fixative, (c)
The fixed cells from the 2nd aliquot will be shipped to Tufts
University for the AFM imaging and preprocessing; (d) The
digital images will be uploaded to the server at Tufts for further
data download and statistical analysis at Dartmouth for cancer
cell discrimination.

III. ATOMIC FORCE MICROSCOPY

A recently introduced AFM modality is a new cell imaging
technology that allows not only imaging the cell surface with
substantially higher resolution than optical and even electron
microscopy, but provides a unique mapping of various physical
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properties of the cell surface (force, like rigidity, adhesion, en-
ergy dissipation, deformability, etc.) at the nanoscale; see Fig.
1. AFM enables obtaining both lateral and vertical resolutions
which can be attained on fixed cells are ~1-5 nm and 0.01 nm,
respectively, which is ~40-200x (for lateral resolution) and
10000x (for vertical resolution) better than the resolution
attained with optical microscopy, and even higher than that
typically obtained with electron microscopy [11]. These new
AFM modalities allow obtaining of up to eight novel im-
ages/maps of cell surface, more than 150 new parameters that
have not yet been studied for cell characterization. Previously
we had success in virtually ambiguous discriminating cancer
from normal cervical cells using this AFM imaging method.
It was discovered that the fractal dimension of the adhesion
AFM images allows unambiguously segregate normal cells
from a mix of precancerous and cancerous cells [14], [9].
There are already fully automated AFMs (currently used in
semiconductor industry, for example, Bruker Dimension AFP,
https://www.bruker.com). Such microscopes can readily be
used to image dried fixed cells in air as proposed without
the need in trained technician.

Fig. 1. Typical AFM force image of a cell surface.

IV. STATISTICAL METHODS OF CLASSIFICATION

According to general classification [7], AFM images belong
to the family of content independent images. In the past,
we have been successful in applying cumulative distribu-
tion function and implied ordered statistics, empowered by
classical nonparametric tests such as Kolmogorov-Smirnov
[4], [5], [6] for classification of content independent, and
particularly cancer cell images. Fig. 2 depicts three typical
AFM height images of urine cells with three pseudo coloring at
quantiles 33% and 66%. Unlike traditional image recognition
techniques [2], [12], [24] that deal with one image at a time
we will be using statistical analysis of ensemble of images and
compute the -value for image comparison and classification
and implied sensitivity, specificity, and the ROC curve [8].

Fig.2. Pseudo-color AFM images of bladder cells.

V. RESULTS

The classification of 83 AFM cell images in 20 urine
samples derived under previous protocol is depicted in Fig. 3.
Two image topography/height parameters, Sdr=Surface Area
Ratio (the roughness of the surface) and Sds=Surface density

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

145



3

(the number of maxima of surface density per unit square)
perfectly discriminate cancer cells from controls. Empty circle
represents the cell and solid circle represents the median
across cells found in the urine sample (about 4 cells per urine
sample).
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Fig.3. 83 AFM cell images from 20 individuals.

We can perfectly separate controls and cancers using the
rule area  47 and density maxima  35. An important
observation is that the variation of the AFM image parameters
is smaller within the sample compared to the variation across
samples/patients. Although some cells may be misclassified
(green points within the grey rectangular) combined together
they uniquely classify individuals into normal and cancer
groups. Our very preliminary data has encouraging 100%
sensitivity and 100% specificity of cancer detection using just
two AFM image parameters but we need to collect more urine
data to demonstrate the feasibility of detection of low-grade
cancers.
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Abstract

Voice disorders originate from disturbances of the
two vocal folds’ (VF) vibration patterns. Laryngeal
high-speed videoendoscopy (HSV) is the state-of-
the-art technique to examine and analyze objec-
tively the 2D VF vibration pattern.
We present an approach allowing a fully au-
tomated analysis of the HS video data based
on wavelet analysis of so-called phonovibrograms
(PVG), which are extracted from the high-speed
videos. Using a principal component analysis
(PCA), a low-dimensional feature set is derived from
each PVG. These clinically relevant features are
suitable to automatically classify healthy and patho-
logical voices using a support vector machine (SVM)
as a machine learning approach. In addition a reg-
istration of PCA spaces is presented, allowing for a
normalization of the derived measures.

Keywords Wavelet-based analysis, Multiscale prod-
uct, normalization, computer assisted classification, high-
speed laryngoscopy, vocal fold analysis, phonovibrogram.

1 Introduction

Voice production is a highly complex process, initiated
by VF vibrations, which modulate the airstream from the
lungs [1]. Voice disorders have been causally related to
irregularities in these vibrations. The VF movements can
be assesed using HSV endoscopy, which allows new in-
sights into physiologic and pathologic mechanisms of VF
vibrations. The Laryngeal images are captured in real-
time using samplingrates of 2,000 - 20,000 fps and are
therefore also capable for examination of dynamic phona-
tions [2].

In clinical routine, the VF vibrational behavior is as-
sessed by a time consuming and subjective visual inspec-
tion, rating asymmetry, asynchronity, irregularity and sta-
bility of the vibration pattern. The PVG is an approach
for an objective analysis to quantify vibration character-
istics from the HSV. It provides a compact description
and visualization of the entire vibration pattern [4]. Fig.
1 shows the PVG construction process and further anal-
ysis. Different approaches for assessing quantitative fea-

Figure 1: Wavelet based PVG analysis [3]. (A) Segmentation
of VF edges in each frame. (B) Rotation of the left VF edge
and color-coding distances. (C) PVG construction. (D) Result
obtained by stationary wavelet-based analysis projected into a
PCA space.

tures from the PVG has been shown, having two main
limitations: (a) extremly high number of extracted fea-
tures and (b) the features are not understandable within
a clinical context [5]. We present an approach to over-
come these limitations by a wavelet-based procedure in
combination with a PCA to analyze the PVGs geomet-
ric structure. On basis of the three dominant eigenvalues
λ1, λ2 and λ3, the most significant properties of the VF
vibration patterns are extracted by quantifying the main
characteristics of the PVG geometry. The eigenvalues
provide a compact representation of the complex VF vi-
bration patterns along the entire glottal axis. Furthermore
they are clinically interpretable as they correlate with a
rating scheme elaborated by the European Laryngologi-
cal Society (ELS) [6]. A correlation between λ1,2,3 and
the glottal closing characteristics has successfully been
shown. But subjects projected into different PCA spaces
cannot be compared directly, due to their dependency on
the dataset used to span the respective PCA space. This
impeeds significantly the application in clinical context.
To overcome this limitation we propose a normalization
of the PCA space, employing an affine registration ap-
proach using synthetic PVG contours. Further, an auto-
mated classification for pathologic and physiologic vibra-
tions is presented based on the temporal variation of the
eigenvalues using a support vector machine (SVM).

2 Methods

The proposed method was developed and verified
based on clinical laryngeal HSV. Endoscopic imaging
during phonation was performed using the Endocam
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Figure 2: Steps of a non-stationary PVG analysis. (A)-(E)
show the non-stationary PVG analysis approach: PVG compu-
tation, phase estimation, PVG sequencing, phase averaging and
contour extraction. (F) illustrates a PCA space spanned by λ1

and λ2. (G) and (H) show the classification, based on feature
extraction, as well as the normalization of the PCA space using
a registration approach.

5526 high-speed camera system (Richard Wolf GmbH),
which provides a resolution of 256 × 256 pixels at 4,000
fps. For the analysis 500 frames were evaluated.
PCA spaces used for the normalization approach were
spanned from 100 healthy subjects (females: 63, age
41.27 ± 15.84 yr; males: 37, age 49.05 ± 15.33 yr). As
a testset, 20 subjects were used, containing 10 healthy
(10 females, age 20.1 ± 1.9 yr) and 10 pathologic sub-
jects (unilateral VF paresis: 5 females, age 43.8 ± 13.2
yr & muscle tension dysphonia: 5 females, age 48.6 ±
11.4 yr). Fig. 2 visualizes a non-stationary PVG analysis
(n.stat.anal.).
Subsequent steps and used parameters are shortly sum-
marized in the following, details can be found in [2].
For automated classification, additional to the set of 100
healthy subjects, 50 subjects (females: 28, age 48.80 ±
18.43 yr, males: 22, age 56.40 ± 12.81 yr) diagnosed
with unilateral vocal fold paresis, were used. All sub-
jects1 were collected in a previous study [3] and exam-
ined during sustained phonation of the vowel /ae/ at a
comfortable pitch and loudness for at least 1s using rigid
endoscopy.

2.1 Non-stationary PVG analysis

Different vibration types of the VF occure in a PVG
as characteristic geometric pattern [3], providing a basis
for pattern recognition. During sustained phonation, only
a slight change of the geometric PVG pattern through-
out an entire HSV sequence can be noticed. In con-
trast, a dynamic phonation leads to considerable changes,
implicating a n.stat.anal. which extracts the PVG con-
tours as a function of time. First, the vibrating VF edges
in the HSV are segmented using a region-growing al-
gorithm. The distances of the VF edges relative to the
glottal axis are color-coded and construct the 3D PVG-
matrix (Fig. 1). To describe spatiotemporal properties,

1Note that a part of the here shown HSV including the
PVGs are provided in the ”medDB” open access research database
(http://lea.hochschule-trier.de).

the PVG is split into subsequent cycles. Therefore the
complex wavelet phase of the hemi-glottal area func-
tion hGAW l,r, as well as an analytic Morlet wavelet,
and a continuose wavelet transform, is used to derive re-
quired phase information. Based on these cycles, for a
n.stat.anal., the PVG is divided into a series of equally
sized windows w = [1, ...,W ] (see Fig. 2(C)), such that
short time stationarity can be assumed. Afterwards an
average cycle geometry is estimated. A windowsize of
62.5 ms equal to M = 250 images per window, with an
overlap of 25 frames, is used to track temporal changes
with a high degree of precision. The following steps are
applied on each window individually. After identification
and normalization of the cycles, the VF deflections are
averaged over the extracted cycles of the corresponding
window w. This mean pattern reflects the mean vibra-
tion type of the windows average PVG cycle. Using a
Mexican hat wavelet and a multiscale product approach
for computation of the distances between the opening and
the closing instants alongside the anterior-posterior axis,
the characterization of the VF vibration mode is finally
performed for each window and each VF [3]. A com-
pact representation of the mean geometry is achieved by
projecting corresponding distance vectors into a param-
eter space. This parameter space is spanned by the first
three eigenvalues λ1,2,3, which are obtained by a PCA
(Fig.1(D) & Fig.2(F)). λ1 encodes the open-closed ra-
tio, λ2 discriminates between zipper-like openings and
λ3 discriminates between oval and hour-glass vibration
type [3]. For a n.stat.anal. of so far unknown HSV, the
distance vectors of each VF and window are projected in-
dividually into the spanned PCA space. This results into
a pair of trajectories (λl,r1 (w), λl,r2 (w), λl,r3 (w)), allowing
an easily interpretable representation of PVG contours in
clinical practice and a powerful data reduction [3, 2].

2.2 Feature extraction

A short overview on parameters rating asymmetry,
asynchronity, irregularity and stability of the vibration is
given, detailed information can be found in [3].
The lateral vibratory asymmetry Fasym(w) is defined by
the L2 distance of the projection of the left and the right
VF into the PCA subspace:

Fasym(w) =

√∑3
i=1

(
λli(w)− λri (w)

)2
.

The irregularity of the vibration pattern F l,rirr(w) is
defined as absolute sum off all eigenvalues order ≥ 4

F l,rirr(w) =
∑
i≥4

∣∣∣λl,ri (w)
∣∣∣.

The average phase delay Fasync(w) between the left and
the right VF is defined by
Fasync(w) = 1

M

∑
| arg (ei(φ

l
w(a0(b),b)−φr

w(a0(b),b)))|
and using the wavelet phases of the left and the right
hemi-glottal area waveform functions φl,rw (a0(b), b).
The stability of the vibration is expressed by the standard
deviation ‖std(λl,r1,2,3)‖2 of the eigenvalues, a higher
irregularity leading to higher values.
For a healthy voice during a sustained phonation, the VF
vibration pattern can be assumed to be time-invariant,
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indicated by stable projection within the PCA space. For
pathologic voice however, due to the unstable VF vibra-
tion, a shift in the PCA space is expected. Symmetry
and temporal stability of the dominant vibration pattern
of left and right VF during a sustained phonation are
described by the twenty-dimensional feature vector FS ,
which assembles the mean values and standard devia-
tions for the parameters Fasym(w), F l,rirr(w), Fasync(w)

and λl,r1,2,3 for a single subject.

2.3 Classification: paretic vs. healthy

Since a stat.anal. might not be sufficient for a reliable
diagnosis on the vibration asymmetry, the benefit of the
generalized n.stat.anal., leading to a twenty dimensional
feature vector FS , is demonstrated, using HSV from
20 subjects. A recent approach [3], resulting in a ten-
dimensional feature vector FRef and serving as bench-
mark, was applied using the same group of subjects. The
investigated group consists of 100 healthy subjects and
50 subjects diagnosed with unilateral VF paresis.
Due to the small group size of paretic subjects, the maxi-
mum number of selectable features was set to five. [7, 8]
A supervised machine learning approach is used to clas-
sify an unseen feature vector to the class ’healthy’ or to
the class ’paresis’. A Support Vector Machine (SVM)
with polynomial kernel was applied to build a predictive
model for classification, using the identified features as
well as the reference feature set FRef as input.

2.4 Normalization of PCA-spaces

In general, subjects in different PCA spaces cannot
be compared directly, because their eigenvalues depend
on the dataset used to span the respective PCA space
(Fig. 3(A)). We propose a normalization, allowing
comparability between subjects in different PCA spaces
by using a registration approach transforming subjects
from different PCA spaces on a corresponding point in a
normalized PCA space.
First, a stationary PCA space is spanned by healthy
subjects in which a set of synthetic distance vectors
(visualized by ’+’ in Fig. 3), is projected. These distance
vectors describe vibration patterns, each characterized
by only one of the three eigenvalues, according to the
definition of the ELS. They lead to a set of reference
points for each PCA space dimension, which is slightly
distorted relative to the PCA space axis. By applying a
registration approach according to [9], the coordinates
of the synthetic contours are transformed such that
λT1,2,3 ∈ [−1, 1] in the new PCAT space (3(B)). This
allows direct comparability between different normal-
ized PCA spaces originally spanned by different healthy
subjects and is furthermore suitable for fast and reliable
voice assesment in clinical practice.
To verify the proposed normalization, different PCA
spaces were calculated. After normalization, a testset of
20 subjects was projected into the PCA space. Hereby
the spreading of the dominant eigenvalues relative to

Figure 3: PCA space normalization using a registration ap-
proach. (A) An exemplary subject, indicated by one triangle
for each VF, projected into different PCA spaces (each spanned
by 60 randomly chosen healthy subjects) before normalization.
(B) PCA spaces after normalization demonstrating the power
of the presented normalization approach, illustrated by the sub-
jects identical localization.

the respective eigenvalues in a reference PCA space
(spanned by 100 healthy subjects) is determined and used
as a measurement for reliability of the normalization.
Also the relative error of the projection in the normalized
PCA space spanned by varying number of subjects was
investigated.

3 Results

3.1 Classification

Based on feature selection, a machine learning ap-
proach using a SVM was applied for discrimination be-
tween physiologic and pathologic vibrations. A stat.anal.
approach, resulting into a single data point for each VF,
is used as benchmark.
The Fasym measures of the healthy subject (stat.anal.:
Fasym = 1.11, n.stat.anal.: F̄asym = 1.16,
‖std(λl1,2,3)‖2 = 0.177, ‖std(λr1,2,3)‖2 = 0.083), show
only a slight change of the vibration pattern over the time.
For the VF paralysis subject, a distinct change of both VF
eigenvalue distributions can be seen (stat.anal.: Fasym =
1.02, n.stat.anal.: F̄asym = 1.28, ‖std(λl1,2,3)‖2 =
0.746, ‖std(λr1,2,3)‖2 = 0.638). Since this change in vi-
bration symmetry cannot be observed using a stat.anal., a
n.stat.anal. is necessary to investigate features describing
the temporal stability that seem to be sufficient for dis-
tinction between physiologic and pathologic vibrations.
For reduction of the feature space dimension, the de-
scribed feature selection approach was applied to the non-
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Figure 4: Relative Error decreasing significantly with higher
numbers of subjects used to span the PCA space. Reliable re-
sults with a relative error of <1% can be recieved by spanning
the PCA space with more than 60 subjects.

stationary feature vector, resulting in five appropriate fea-
tures F̄asym, F̄async, std(Fasync(w)), F̄irr, λ̄r2, which
were fed into the SVM for automatic classification. A
classification accuracy of 91.3% (sensitivity: 80%, speci-
ficity: 97%) was achieved for the five selected features
based on a leave-one-out validation scheme, and a clas-
sification accuracy of 89.3% (sensitivity: 76.0%, speci-
ficity: 96.0%) for the benchmark feature set FRef .

3.2 Normalization

The presented classification approach is eligible to dis-
criminate between physiologic and pathologic vibrations,
but for direct comparability of the subjects a normal-
ization is required. For better visualization only PCA
subspaces spanned by λl,r1 and λl,r2 are displayed. The
light grey data points in the background represent the
eigenvalue distribution of the subjects used span the PCA
space. Exemplarily, one analyzed subject is projected
into different PCA spaces and visualized by dark data tri-
angles. Fig. 3 shows the projection before (A) and after
(B), demonstrating a successful normalization by same
localization in the PCAT spaces. The normalization is
reliable for healthy as well as for pathologic subjects (re-
sults not shown) and the spreading in constant PCA space
size is independent from the vibration pattern. Also the
influence of the number of subjects used to span the re-
spective PCA space was investigated (Fig. 4), showing a
significant decrease of the relative error with higher num-
ber of subjects. For reliable results with a relative error
of less than 1% a minimum of 60 healthy subjects is rec-
ommended to spann the PCA space.

4 Conclusion

The temporal stability of the VF vibration was found
to be useful for an automatic identification of voice disor-
ders. We presented an automated classification approach,
which is able to to discriminate between a physiological
and a pathological vibration pattern based on the tempo-
ral variation of the eigenvalues using a SVM. But for a
reliable diagnosis based on the temporal stability of the
VF vibration pattern, a sustained phonation that satisfy
the steady-state criterion is necessary to avoid wrong di-

agnosis.
Further a normalization of PCA spaces spanned by differ-
ent subjects, as well as for the projection of the subjects
to be investigated, has been demonstrated. It provides re-
liable and comparable results for PCA spaces spanned by
at least 60 subjects and allow for a better interpretation of
the VF vibration characteristics in clinical practice.
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Abstract

Fetal Heart Rate (FHR) is clinically used for early
detection of fetal acidosis. Despite a marked inter-
est in automatic detection procedures, FHR anal-
ysis remains a challenging signal processing task,
receiving considerable research attention. Among
other difficulties, the two stages of labor (dilation and
active pushing) produce very different FHR dynam-
ics. Most research efforts, however, have either ig-
nored these differences or analyzed only one of the
two stages of labor. In this work, we propose to as-
sess the impact of labor stages on acidosis detec-
tion performance. A state-of-the-art sparse support
vector machine classifier that performs simultane-
ously feature selection and classification is applied
to a large-size and well documented FHR database.
It shows that the selected set of features differs
for each stage and that detection performance im-
proves when the difference between labor stages is
considered.

Keywords Fetal Heart Rate, Acidosis detection labor
stages, scale-free features, Sparse SVM,

1 Introduction
Intrapartum Fetal Monitoring. Fetal heart rate (FHR)
provides major information about fetal health and is thus
routinely monitored in clinical practice. It is mainly used
to assess well-being of the fetus, and to decide on an oper-
ative delivery. In daily clinical routine, FHR is examined
by visual inspection following clinical guidelines issued
by the International Federation of Gynecology and Ob-
stetrics (FIGO) [1]. However, the intrinsic complexity of
FHR makes its visual interpretation difficult and the sole
use of FIGO guidelines leads to a substantial inter and
intra observer variability [2], which is in part responsi-
ble for a growing number of unnecessary Caesarean sec-
tions [3]. There are hence numerous research efforts de-
voted to automated fetal acidosis early detection.
Automatic FHR processing. Automatic acidosis detec-
tion relies on the use of supervised machine learning,
based on features aiming to capture the relevant charac-

Work supported by Czech Science Foundation Agency project No. 14-
28462, ANR AMATIS grant, and Hospices Civil de Lyon, Hôpital
Femme Mere Enfant, Project Hospitalier de Recherche Clinique.

teristics of FHR temporal dynamics. A wide range of sig-
nal processing techniques have been explored to devise
such features, ranging from computerized FIGO guide-
lines [1] to multifractal analysis [4]; cf. [5] for review.
Labor stages. Automatic FHR analysis is further com-
plicated by the existence of two distinct labor stages.
The first stage (dilatation), is characterized by progres-
sive cervical dilatation and regular contractions. The sec-
ond stage (active pushing), is characterized by a fully di-
lated cervix and expulsive contractions. Both stages are
characterized by largely different temporal dynamics.

State-of-the-art approach is to study either single labor
stage alone, cf. e.g. [6,7] or not to distinguish between the
stages at all [8,9]. While the former approach is method-
ologically correct, it discards data that might be useful
for detection improvement. The latter approach is im-
paired by the potential different FHR dynamics: relevant
features might thus change drastically from one stage to
the other, and negatively impact classifier generalization
ability.
Related works. There have been only few attempts to
study the impact of the transition between stages in FHR
detection. Nevertheless, some preliminary analyses have
been performed to assess how each stage impacts the
Hurst exponent [10] and entropy rates [11]. However
there is no systematic reports on how such stage differ-
ences impact supervised classification.
Goals, contributions and outline. The present contri-
bution aims to investigate the impact of labor stages in
supervised classification. Both the selection of relevant
features and classification performance are compared be-
tween the two stages, with emphasis on the existence of
features that are discriminative in both stages. To achieve
these goals, Sparse-Support Vector Machine (S-SVM),
for joint classification and feature selection, is applied to
a comprehensive set of FHR features, computed from a
large FHR database (cf. Section 2). Classification per-
formance and feature selection are compared, jointly for
both stages and independently for each one, cf. Section 3.

2 Methods
Database. FHR data were collected at Femme-Mère-
Enfant hospital, in Lyon, France, during daily routine
monitoring from 2000 to 2010. Recording were per-
formed using STAN S21 or S31 devices with internal
scalp electrodes. Clinical information was provided by
the obstetrician in charge, notably the umbilical artery
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Table 1: Clinical data for both stages (acidotic vs. normal group), reported as mean (standard deviation). Statistical
differences between acidotic and normal subjects(p < 0.05) are indicated with †.

SI SII

Acidotic Normal Acidotic Normal
n=27 n=1015 n=28 n=734

Birth-weight (g) 3383 (446) 3329 (472) 3452 (400) 3366 (444)
Operative delivery for fetal distress (n) 12 (44%) 213 (21%)† 13 (46%) 151 (21%)†

Umbilical cord arterial pH 7.01 (0.03) 7.24 (0.07)† 7.01 (0.04) 7.22 (0.06)†

Apgar score at 5 minutes 9.37 (0.93) 9.89 (0.53) 9.57 (0.79) 9.90 (0.43)
Length of second stage (min) 8.67 (5.02) 6.82 (5.09) 27.86 (9.67) 27.64 (9.85)
Time from end of rec. and birth (min) 1.61 (2.72) 0.81 (1.87)† 1.93 (3.36) 0.96 (2.08)

pH after delivery and the decision for intervention due to
suspected acidosis [12]. Subject inclusion criteria were
detailed in [7, 12], leading to a set, S, of N = 1804
recordings, gathering: acidotic subjects, N+ = 55, with
pH ≤ 7.05 and normal cases, N− = 1749, with pH >
7.05 [13]. For the purpose of first vs. second stage com-
parison, subjects were further split into two groups based
on the second stage duration (tII ): set SI with tII ≤ 15
min and set SII with tII > 15 min. Relevant clinical data
are reported in Table 1. FHR analysis was systematically
conducted on the last 20 minutes of FHR recordings, as
illustrated in Fig. 1.

XNI
(t)

...
X2(t)

X1(t)

≤ 15 min.
stage IIstage I

I → II

XN2(t)

...

X2(t)

X1(t)
> 15 min.
stage IIstage I

I → II

Figure 1: Analyzed regions. Rectangles indicate the last
20 min under analysis SI (left) and SII (right).

Features. The set of 20 features as described in [7] is
used. They are organized in three groups labeled auto-
mated FIGO, spectral and scale-free dynamics.
FIGO enhanced and automated FIGO features. They
are based on FIGO guidelines, used by obstetricians to
evaluate FHR: baseline evolution, variability and char-
acterisation of accelerations/decelerations [1]. Baseline
evolution is modeled by a linear regression: B(t) =
β0 + β1t. Long and short term variability (LTV and
STV , respectively) are computed with the standard pro-
cedures detailed in [1]. The number of accelerations and
decelerations (#acc and #dec) are counted using the
definitions in [1]. Finally, decelerations are further quan-
tified by their average depth MADdtrd, average duration
Tstress and average area Adec.
Spectral features. Spectral behavior of FHR is quan-
tified by computing the energy in predefined frequency
bands. Since no consensus has been reached on the def-
inition of such bands for fetuses (cf. [14, 15] for discus-
sions), the definitions for adults [15] are used: very low
frequency EV LF ([0.003, 0.04] Hz), low frequency ELF

([0.04, 0.15] Hz), and high frequency EHF ([0.04, 0.15]
Hz). Finally, the ratio of ELF and EHF , denoted as
LF/HF , and the spectral index α [15], estimated over
both LF and HF bands, are computed. All spectral esti-

mates are computed using the Welch periodogram.
Scale-free dynamics features. Following [4, 7, 15],
scale-invariance/multifractal features are computed to
quantify the multiscale and complex FHR temporal dy-
namics. All these features are estimated using linear
regressions based on relevant multiresolution quantities.
Features H and hmin are computed from the moments of
wavelet coefficients. Features c1, c2, c3 and c4 are com-
puted from the cumulants of wavelet leaders [16]. Fea-
tures H and c1 are related to the correlation structure of
FHR, while hmin, c2, c3 and c4 measure information con-
tained in its higher-order statistics. see also e.g. [4, 15].
Feature preprocessing. Outliers were removed by Win-
sorization in the interval [Q1 − 3IQR,Q3 + 3IQR],
where Qi is the i-th quartile and IQR = Q3 − Q1 is
the interquartile range. All features were standardized.
Sparse Support Vector Machine. S-SVM is a machine-
learning tool that performs jointly classification and fea-
ture selection [17]. Like traditional SVM, S-SVM com-
putes an optimal hyperplane that separates normal and
acidotic cases. In addition, S-SVM performs feature se-
lection by imposing an `1-norm regularization that leads
to a decision rule that effectively involves only a limited
subsets of features regarded as relevant. S-SVM thus out-
puts a feature-weight vector w = (wi) that quantifies the
importance granted to each feature: wi = 0 indicates
features that are poorly discriminant and thus not used
in classification, whereas larger wi indicates a large dis-
criminative power of feature i. Training of S-SVM de-
pends on a regularization parameter C that controls the
trade-off between decision rule (or feature) sparsity and
misclassification rate (with higher values ofC decreasing
sparsity). For further details on S-SVM, see [7, 17] and
references therein.
Performance assessment. Performance is quantified by
the specificity (SP), sensitivity (SE) and balanced error
rate: BER = (SP + SE)/2. Selection of C, com-
putation of weights wi and performance assessment are
performed using double-loop stratified k-fold cross vali-
dation (CV), where k is chosen as the number of acidotic
cases (see [7] for details).

3 Comparisons between the labor stages
Pairwise correlation. Fig. 3 displays the pairwise corre-
lations of all features, for each stage, and reveals several
interesting characteristics. First, the correlation structure
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Figure 3: Correlation. Pairwise correlation matrix of all
the features for the two labor stages: a) SI , b) SII .

is similar for both stages, but overall correlation is higher
during SI than during SII . Second, several features (e.g.
β0, β1,, c2) are uncorrelated to all others, irrespective of
the stage. Third, features H, c1, and hmin have very high
correlations [7] in both stages. Due to proximity of H ,
hmin and c1 in nature, H and hmin are considered redun-
dant to c1 and are removed from further analysis to ease
interpretation of results. Other highly-correlated features
are kept since they are of different natures.
Feature selection and classification. Fig. 2 displays the
weights produced for each feature (top panels) and clas-
sification performance (bottom panels), as functions of
the sparsity parameter C. First, it illustrates that low val-
ues of C promote sparsity with less features involved in
classification. Second, it shows that optimal performance
is obtained for a level of sparsity referred to as Copt that
never corresponds to the use of all available features. This
highlights the need to perform feature selection to prevent
unnecessary over-complicated and over-fitted models.
Optimal feature set. Table 2 shows selected features and
their corresponding weights, at the optimal level C =
Copt (only those with nonzero weights are displayed). It
can be seen that classification in SI requires only four
features: MADdtrd and Tstress (decelerations’ amplitude
and frequency), β0 (baseline level), and c1 (scale-free lin-
ear variability). For SII the feature vector is even more

Table 2: Selected features and weights.
S w

c1 .68
Tstress .43
MADdtrd .41
c2 .29
EHF .18
STV .17
β0 .16

SI w

MADdtrd .82
β0 .50
c1 .24
Tstress .16

SII w

c1 .89
c2 .45

sparse and contains only two features: c1 and c2 (scale-
free nonlinear variability). In contrast, for S, not only the
features that are significant for SI and SII , but also extra
features such as measures of short term variability like
STV and EHF are included. These additional features
are likely needed to account for the additional inter-stage
variability, which leads to an overall decrease in detec-
tion performance compared to what can be achieved us-
ing the knowledge about the stage of the delivery. Finally,
Table 2 highlights that c1 is the only feature used in all
groups. Interestingly, it consists of robust quantification
of FHR variability (cf. e.g., [7, 15]).
First versus second stage. S-SVM selects for SI features
classically rooted in clinical practice, such as MADdtrd,
Tstress (both quantifying the impact of decelerations),
and β0 (average level of baseline). Interestingly, these
features are no longer used for SII . Since the second
stage is associated with active maternal pushing, large
and frequent decelerations are present in most records,
irrespective of acidosis. In light of the loss of discrimina-
tive power from MADdtrd, Tstress, S-SVM conveniently
replaces them with c2 (which is associated with changes
in local regularity and burstiness of data), as a companion
to the already selected c1.
Optimal classification performance. Classification per-
formance for C = Copt is presented in Table 3. It in-
dicates that that independent evaluation of SI and SII

 

 

 

 

c) Copt
b) Copt

a) Copt

BER
SP
SE

log2(C)log2(C)S
E

;
S
P

;
B
E
R

log2(C)

|w|

−9 −8 −7 −6−9 −8 −7 −6−9 −8 −7 −6
0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

c4
c3
c2
c1
α

LF/HF
EHF

ELF

EV LF

LTV
STV

Tstress

MADdtrd

Adec

#dec
#acc

β1

β0

Figure 2: S-SVM performance. Feature selection (top row) and classification performance (bottom row) as function of
the regularization parameter C. Results for different sets: a) S, b) SI , and c) SII .
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Table 3: Optimal classification performance for differ-
ent combinations of training / testing sets.

Tr / Te SE SP BER #TP #FN #TN #FP

S/S .62 .71 .66 34 21 1241 508
SI/SI .67 .74 .70 18 9 752 263
SII/SII .68 .70 .69 19 9 515 219
S/SI .56 .80 .68 15 12 807 208
S/SII .68 .59 .64 19 9 434 300

results in better classification performance, since simple
models with only the relevant features for each stage are
used. Interestingly, if the classifier trained from S is
tested only with samples from SI and SII , dramatic loses
of either sensitivity or specificity are observed; this indi-
cates that the loss of performance is due to a suboptimal
training of the classifier that fails to fully account for the
characteristics of each stage.

4 Conclusions
This contribution explores the influence of the two

stages of labor on feature selection and classification per-
formance in a supervised classification task. To that end,
it uses a comprehensive set of FHR features and a Sparse-
SVM framework on three scenarios: i) naive classifica-
tion without recognizing labor stages ; ii) separate classi-
fication of records in the first stage ; iii) separate classifi-
cation of the records in the second stage. It was shown
that failure to recognize the stages leads to a complex
model, involving a large number of features, with inferior
performance. In contrast, results indicate that an indepen-
dent evaluation of both stages provides simpler models
(less features) with better performance. Further, selected
features for the first stage confirm the predominance of
decelerations and variability for acidosis detection while,
for the second stage, decelerations are no longer informa-
tive and other measures of variability, namely c1 and c2,
are preferred.
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Abstract 

Amnestic mild cognitive Impairment (aMCI) is a 
frequent form of cognitive dysfunction which 
increases the risk of culminating in Alzheimer's 
disease (AD)-related dementia. Previous studies 
have demonstrated that AD is accompanied by 
alterations in autonomic function, which in turn 
have been linked to cognitive performance in non-
demented subjects. In this study, we employ a 
probabilistic model of linear and nonlinear 
heartbeat dynamics to investigate the possibility of 
detecting subtle autonomic alterations in aMCI, 
using heartbeat information alone. To this end, we 
compared age- and gender-matched 13 healthy 
controls to 13 MCI patients without ouvert 
dysautonomia by feeding an autonomic nervous 
system related feature set computed from a 
probabilistic heartbeat model into a classification 
framework. We obtained a satisfactory 
classification performance (73% balanced 
accuracy), which dropped to 65% when excluding 
cardiovascular nonlinear/complex features. Our 
results point toward the presence of subtle 
autonomic dysfunction even in aMCI (a possible 
prodromal condition to AD), which can only be 
detected using comprehensive time-varying, 
nonlinear/complex estimates of heartbeat 
dynamics. 
Keywords Heart Rate Variability, Autonomic Nervous 
System, Support Vector Machine, Autonomic 
dysfunction, Mild Cognitive Impairment

1 Introduction 

Amnestic mild cognitive Impairment (aMCI) is a 
frequent form of cognitive dysfunction which increases 
the risk of culminating in Alzheimer's disease (AD)-
related dementia. AD is a progressive disease and, 
along with neurological alterations and cognitive 
degeneration, it can involve autonomic dysregulation 
[1-3], most probably due to the involvement of central 
nervous system structures known to participate both in 

autonomic modulation and in cognitive processing, 
such as part of the telencephalon (e.g. anterior cingulate 
cortex, insula, amygdala [4]), the hypothalamus as well 
as brainstem structures. More in detail, it is known that 
the insula, a structure which has been seen to be 
associated with cardiac autonomic dysfunction [5], is 
affected even in the preclinical stages of AD. 
Accordingly, a number of previous studies have 
investigated the cardiac branch of the autonomic 
nervous system in AD using techniques like orthostatic 
reflexes, modulation by breathing and Valsalva's 
maneuver, mostly reporting alterations of 
sympathovagal balance in AD [6]. Additionally, a 
number of studies have investigated possible 
relationships between heart rate variability (HRV) - 
related estimates of autonomic nervous system (ANS) 
outflow and cognition in non-demented subjects. Most 
of these studies show an association between varying 
degrees of cognitive impairment and cardiac autonomic 
dysfunction [7-10]. 

The aim of this study is therefore to investigate for the 
first time if, using only cardiac signals, autonomic 
alterations can be detected in patients suffering from 
aMCI, a condition which causes a slight but noticeable 
decline in cognitive abilities, and which represents an 
increased risk of developing AD or other dementias. 

2 Methods 

2.1 Experimental Procedures 

Plethysmographic (PPG) signals were recorded with a 
sample frequency of 50 Hz from 13 healthy controls 
(HC, 9 males, 4 females, age 64.60 ± 6.84 years, 
median ± MAD, where MAD(X)=Median(|X-
Median(X)|)) and 13 aMCI patients (8 males, 5 females, 
age 72.80 ± 2.72 years, median ± MAD). No significant 
group difference was found in age (p=0.065, Mann-
Whitney test, null-hypothesis of equal medians) and 
gender (p=0.680, Chi Square test, null-hypothesis of no 
gender-group interaction). Subjects were placed 
horizontally in a supine position and remained at rest 
during the whole recording (600s). During the 
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acquisition, all subjects were instructed not to talk and 
maintained relaxed spontaneous breathing. All 
participants gave written informed consent to 
participating in the study, which was approved by the 
local ethics committee. 

 
2.2. Patient Evaluation 
 
Clinical assessment included history of disease- 

related symptoms and signs, and full neurological 
examination. All patients were screened for 
cardiovascular autonomic dysfunction, which was 
considered as exclusion criterion. Additionally, 
cognitive functions were assessed among our patients 
through a pool of standardized neuropsychological 
tests, hence classifying them into either the HC o the 
aMCI group. MCI patients suffering from Parkinson's 
Disease (which is known to involve ANS dysfunction) 
were excluded from this study. 

 
2.3 Point process modeling of heartbeat dynamics 
 
In order to accurately model heartbeat dynamics and 

simultaneously extract dynamic estimates of linear and 
nonlinear features of autonomic nervous system, we 
employed a probabilistic point process model. 
Assuming history dependence, the probability 
distribution of the waiting time t−uj until the next R-
wave event ui-1 follows an inverse Gaussian model [11]: 
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vector, and ( )tò are independent, identically distributed 
Gaussian random variables. The choice of a third order 
nonlinear autoregressive (NAR) system retains an 
important part of the non-linearity of the system and 
provides robustness against the presence of 
measurement noise in the data [11]. For parameter 
estimation, a local maximum likelihood method [12] 

using a sliding window of duration W is used to 
estimate the unknown time-varying parameter set. After 
parameter vector estimation, conventional HRV 
features defined in the time domain (the mean, µRR, and 
variance, σRR, of the RR interval series, the variance of 
the probabilistic heart rate, σHR) and defined in the 
frequency domain (spectral power in the low frequency, 
0.04-0.15 Hz, LF, high frequency power, 0.15 – 0.45 
Hz, HF, along with their ratio, LF/HF) can be estimated 
in an instantaneous manner from the first order 
regression terms [12, 13].  
 

2.4. Bispectral Measures 
 
The higher-order spectral representation allows for 

the estimation of statistics beyond the second order, as 
well as phase relations between frequency components 
which would otherwise be suppressed. A detailed 
description of the instantaneous bispectrum derivation 
from point-process nonlinear models can be found in 
[13]. The second order structure allows us to evaluate 
the instantaneous presence of nonlinearity in heartbeat 
series by calculating nonlinear sympatho-vagal 
interactions in the low frequency (LL), low and high 
frequency (LH), and high frequency (HH).  
 

2.5 Instantaneous Lyapunov Exponents 
 
The Lyapunov exponents can be derived by 

estimating the Jacobian over the corresponding time-
varying vector of parameters defined by the point 
process model. The estimation is performed at each 
time t, yielding instantaneous measures of complexity. 
In this study, we employed the Instantaneous Dominant 
Lyapunov Exponent (IDLE) [14].  

 
2.6. Inhomogeneous Point-Process Entropy Measures 

While traditional algorithms estimating measures of 
entropy provide a single value (or a set of values) 
within a predetermined time window, in this study we 
use the recently introduced definition of instantaneous 
approximate and sample entropy (ipApEn and 
ipSampEn, respectively) [15]. In the mathematical 
formulation, m and r(t) are the embedding dimension 
and time delay of the phase space, respectively, that are 
chosed as as r(t)=0.2σRR(t) and m=2 [15]. As the 
definition of the proposed entropy measure is fully 
embedded into the inhomogeneous point-process 
nonlinear framework, it is possible to obtain an 
instantaneous tracking of the system’s complexity as 
defined by ipApEn.  

 
2.7. Construction of feature vectors and statistical 

analysis 
 

All features were calculated instantaneously with a 
Δ=5 ms temporal resolution. In order to build subject-
specific feature vectors, for every subject and for every 
feature X, we condensed the information about the 
time-varying dynamics of X through its median (Xm) 
and its respective absolute deviation (Xmad) over time. 
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As an exploratory/preliminary step, for each feature, we 
evaluated between-group differences in median and 
MAD for every feature using non parametric statistics 
(Mann-Whitney test) under the null hypothesis that the 
between-subject medians of the two groups are equal. 

 
2.8. Classification 
 
In order to investigate whether the possibility of 

efficient single-subject discrimination by using 
heartbeat dynamics alone, we employed a well-known 
SVM-based classification method. In this context, data 
gathered from each subject constitutes one 
multidimensional point in the feature space along with 
its label (HC/aMCI), and each feature constitutes a 
single dimension of this feature space. A 
multidimensional point was considered an outlier if z-
scores associated to its dimensions were greater than 3. 
To assess the out-of-sample predictive accuracy of the 
system, we adopted a Leave-One-Out (LOO) procedure 
based on a Support Vector Machine (SVM)-based 
classifier. Specifically, we employed a nu-SVM (nu = 
0.5) with a radial basis kernel function with γ = n-1, 
where n is equal to the number of features. Within the 
LOO scheme, the training set was normalized by 
subtracting the median value and dividing by the MAD 
over each dimension. These values were then used to 
normalize the example belonging to the test set. During 
the LOO procedure, this normalization step was 
performed on each fold. Additionally, we applied a 
support vector machine recursive feature elimination 
(SVM-RFE) procedure in a wrapper approach (RFE 
was performed on the training set of each fold) and we 
computed the median rank for each feature over all 
folds. We specifically chose a recently developed 
nonlinear SVM-RFE which employs a radial basis 
function kernel and includes a correlation bias reduction 
strategy into the feature elimination procedure [16]. 

 

 
Figure 1: Representative analysis results for one HC (left) and 
one aMCI patient (right).  

3 Results 

Exemplary signals and analysis results from two 
representative subjects are shown in Figure 1. When 

employing univariate nonparametric statistics we were 
not able to detect any differences in autonomic function 
between HC and MCI populations (Table 1). However, 
employing a high dimensional nonlinear classifier 
resulted in a satisfactory performance with 
approximately 61% sensitivity, 84% specificity and 
73% balanced accuracy (see Table 2). Moreover, when 
repeating the classification task employing linear 
features exclusively, the performance dropped to 69% 
specificity and 65% balanced accuracy (Table 3). Of 
note, 5 out of the first 8 most informative features were 
derived from cardiovascular nonlinear/complex 
dynamics (mainly instantaneous bispectral and entropy 
measures - Table 1).  

 
Feature HC MCI p-val Rank 
LLm 8.15E+07 7.24E+07 0.837 24 
LLmad 3.66E+07 3.66E+07 0.538 23 
LHm 2.69E+08 2.49E+08 1.000 3 
LHmad 8.25E+07 8.07E+07 1.000 13 
HHm 4.77E+08 6.29E+08 0.798 9 
HHmad 1.74E+08 2.32E+08 0.959 7 
IDLEm -3.4E-03 -1.8E-02 0.758 18 
IDLEmad 7.32E-02 8.07E-02 0.837 22 
ipApEnm 2.76E-01 2.49E-01 0.918 14 
ipApEnmad  4.63E-02 5.41E-02 0.608 8 
ipSampEnm 2.47E-01 2.27E-01 0.739 17 
ipSampEnmad 5.81E-02 6.51E-02 0.573 2 
µRR

m 9.18E-01 9.38E-01 0.682 10 
µRR

mad 1.49E-02 1.97E-02 0.124 6 
σRR

m 2.50E+02 2.27E+02 0.442 12 
σRR

mad  6.70E+01 6.20E+01 0.720 4 
σHR

m 2.50E+02 2.27E+02 0.442 11 
σHR

mad 6.70E+01 6.20E+01 0.720 1 
LFm 1.80E+02 2.63E+02 0.137 19 
LFmad 7.70E+01 1.96E+02 0.091 5 
HFm 1.14E+02 1.83E+02 0.383 20 
HFmad 4.52E+01 4.37E+01 0.644 15 
LF/HFm 1.26E+00 1.91E+00 0.238 21 
LF/HFmad 5.98E-01 1.29E+00 0.218 16 

Table 1: Univariate statistical comparison in feature values 
(Mann Whitney U-test) between healthy controls (HC) and 
aMCI patients, as well as median rank of each feature in 
feature selection 

 

      HC aMCI 
HC 61.54 38.46 
aMCI 15.38 84.62 

Table 2: Confusion matrix (values in %, true class in columns, 
predicted class in rows) for classification between healthy 
controls (HC) and aMCI patients obtained when using the full 
feature set. Balanced Accuracy = 73.08%. 
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     HC aMCI 
HC 61.54 38.46 
aMCI 30.77 69.23 

Table 3: Confusion matrix (values in %, true class in columns, 
predicted class in rows) for classification between healthy 
controls (HC) and aMCI patients obtained when using linear 
features only. Balanced Accuracy = 65.38%. 

4 Conclusions  

In this paper we employed a probabilistic heartbeat 
model based on point-process theory to extract several 
linear and nonlinear features from PPG recordings 
alone, hypothesizing that this augmented feature set  
may be sensitive to subclinical disease-related 
alterations in aMCI. Given our previous findings [13-
15], we also hypothesized that nonlinear/complex 
heartbeat dynamics would play a crucial role in this 
assessment. Accordingly, we have shown that our 
nonlinear framework provides measures that can be 
used to discern aMCI patients from healthy subjects 
with good accuracy using heartbeat features alone, 
pointing toward the presence of a subtle autonomic 
dysfunction in patients suffering from cerebral 
pathology which could in turn increase the risk of 
developing AD. Importantly, removing linear features 
from the feature set resulted in a drop of about 8% in 
classification performance, demonstrating the central 
value of our framework in characterizing aMCI patients 
in a personalized fashion. While in this pilot study on a 
relatively small cohort we cannot exclude some amount 
of overfitting, since univariate analysis did not show 
significant differences between patients, our feature set 
further represents a multivariate autonomic patient 
profiling tool to be employed as a whole. In the future, 
comprehensive HRV-based autonomic screening may 
become useful as a quick and inexpensive patient 
characterization and stratification tool. Also, future 
work will focus on the validation of these preliminary 
results in larger datasets with longitudinal information 
about conversion to AD of aMCI patients.  
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Abstract

It is essential to evaluate the analgesia-
nociception balance for maintaining sufficient anal-
gesia during general anesthesia. Various analge-
sia indices have been proposed over the last few
decades. However, there is no sufficiently reliable
one when solely used. In this paper, we have devel-
oped an evaluation method of analgesic level dur-
ing general anesthesia based on multiple analge-
sia indices using fuzzy inference．We choose Sur-
gical Pleth Index，Entropy Difference and Analge-
sia/Nociception Index as our multiple analgesia in-
dices based on a comparison result of areas under
the receiver operating characteristic curves, and de-
termine their membership functions and fuzzy rules
according to literature and clinical data. The re-
sults show that the developed method gives a higher
areas under the receiver operating characteristic
curve than the existing indices and may reflect pa-
tients’ state more precisely.

Keywords analgesia index, fuzzy inference, receiver
operating characteristic curves

1 Introduction

During surgery, anesthetics must be provided for pa-
tients to achieve desirable states, that is, hypnosis, anal-
gesia, muscle relaxation, and suppression of harmful re-
flexes. If the anesthesiologist gives the patient too few
anaesthetics, it is likely to cause intraoperative arousal
and body movement which are harmful for patients. On
the other hand, an overdose of anesthetics not only causes
harmful side effects such as bradycardia and respira-
tory depression, but also delays postoperative recovery.
Therefore, inadequate anesthetic administration should
be avoided as much as possible.

To this end, the anesthesiologist has to administrate
anesthetics at a suitable rate according to their own ex-
periences and knowledge for maintaining patients’ state
at all times during surgery, which is a heavy burden to
anesthesiologists. For reducing troubles and risks of in-
sufficient anesthesia or anesthetic overdose, various auto-
matic control systems have been studied [1]. To realize
such systems, reliable indices of anesthetic states are nec-
essary. Regarding hypnosis index, Bispectral index (BIS)

[2] is fairly reliable to be used in anesthesia automatic
control systems; regarding analgesia index, various in-
dices such as Surgical Pleth Index (SPI) [3] based on fin-
ger photoplethysmograph, Entropy Difference (ED) [4]
based on electroencephalogram and facial electromyo-
gram, LF/HF [5] and Analgesia/Nociception Index (ANI)
[6] based on heart rate variabiliry (HRV) have been devel-
oped, however, it is difficult to evaluate analgesic level
due to influence of respiratory rate change and the noise
of electric knife. Thus, there is no analgesia control
systems that obtains satisfactory results although various
analgesia control systems not only using the single anal-
gesia index [7] but also using multiple analgesia indices
[1] have been developed.

In this paper, we develop an assessment method of
analgesic level based on multiple analgesia indices SPI,
ED, ANI using fuzzy inference. Firstly, we determine its
membership functions and fuzzy rules according to lit-
erature and clinical data, then verify its performance by
comparing the areas under the receiver operating charac-
teristic (ROC) curves.

2 The existing analgesia indices

The literature [8] compared areas under the ROC
curves of SPI, ED, LF/HF and ANI. ROC curve is ob-
tained by plotting sensitivity and specificity of the index
on the horizontal and vertical axes respectively for dif-
ferent thresholds. Comparing the area under the curve
(AUC) of ROC curve is one of the quantitative measures
to assess the performance of diagnostic tests. With the
value of AUC getting close to 1, the diagnostic test will
have better performance. From the result of literature [8],
we know that the AUC of ANI based on HRV is signifi-
cantly larger than LF/HF also based on HRV, and there
are no significant difference among ANI, SPI and ED
based on the clinical data from 14 patients. Therefore,
in this paper, we utilize SPI, ED and ANI as our multi-
ple analgesia indices to develop an assessment method of
analgesic level under general anesthesia. In the following
subsections, SPI, ED and ANI will be explained.

2.1 Surgical Pleth Index (SPI)

SPI is calculated by linear combination of normalized
pulse amplitude and pulse interval from photoplethysmo-
graph [3]. During general anesthesia, both pulse ampli-
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Figure 1: Shape of the membership functions

tude and pulse interval will decrease with pain stimula-
tion. Therefore, SPI have been developed to quantify the
level of surgical stress or nociception during anesthesia.

2.2 Entropy Difference (ED)

ED could reflect noxious stimulation and evaluate the
depth of analgesia during general anesthesia by getting
response entropy (RE) and state entropy (SE) from the
signals of electroencephalogram (EEG) and facial elec-
tromyogram (FEMG) [4]. ED is the difference between
RE and SE, which represents activity from 32 Hz to 47
Hz. During general anesthesia, ED=0 means no painful
stimulation and the increase of ED is associated with the
facial muscle activity due to painful stimulation, that is,
the more stress the patients suffer, the greater the ED
value becomes.

2.3 Analgesia/Nociception index (ANI)

ANI based on heart rate variability (HRV) of electro-
cardiogram (ECG) has been developed to evaluate anal-
gesia/nociception balance during general anesthesia [6].
ANI is derived from frequency component between 0.15
Hz and 0.5 Hz of R-R interval (RRI) of ECG, which is
related to the high frequency component of HRV. For
the patient in the stabilized anaesthetic state during gen-
eral anesthesia, parasympathetic tone is dominant and the
magnitude of RR series is high. It leads to relatively high
value of ANI. On the contrary, when painful events hap-
pen, sympathetic activity increases and parasympathetic
activity decreases, which makes the magnitude of RR se-
ries small, and thus the value of ANI becomes lower.

3 An evaluation method for analgesic level
based on multiple analgesia indices using
fuzzy inference

In this section, we propose an assessment method of
analgesic level by combining analgesia indices SPI, ED
and ANI. In the following, we determine the membership
functions of each analgesia index and fuzzy rules based
on the relevant literatures [4, 9-14].

3.1 Membership functions of each analge-
sia index

We consider three states “Nociceptive pain”, “Vague”
and “Analgesia” to represent patients’ analgesic state.
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Figure 2: The membership functions of each analgesia
index

The membership functions for each analgesia index are
represented as a trapezoid function shown in Fig.1. In
this case, the membership functions of each analgesia in-
dex can be defined by determining the range correspond-
ing to 1 for each state. According to literatures [4, 9-14],
we determine the ranges of each state as follows.

Nociceptive pain： The intersection of the nociception
range of all of the literatures.

Analgesia：The intersection of the analgesia range of
all of the literatures.

Vague：The ranges cannot surely be confirmed as no-
ciception or analgesia from the literatures.

The obtained membership functions are shown in
Fig.2.

3.2 Membership functions of analgesic
level

We represent the analgesic level between 0 and 100;
0 and 100 means complete absence of pain, and the most
painful state respectively. By dividing analgesic state into
nine levels, the membership functions of analgesic level
are given as nine triangular functions with the peak value
of 0, 12.5, ..., 50, 62.5, ..., 100, which are corresponding
to A4, A3, ..., NA, N1, ..., N4, as shown in Fig.3. Here,
NA is the level that belongs neither to analgesic state nor
to nociceptive state; A stands for “analgesia” state and N
stands for “nociceptive” state, and the number is the de-
gree of the state, i.e., the larger number means the greater
degree.

3.3 Fuzzy rules

Dealing with all the analgesia indices equivalently, we
set fuzzy rules as Table 1. Here, Index 1, Index 2, and
Index 3 correspond to any one of SPI, ED, and ANI; Noc,
Vag, and Ana correspond to nociceptive pain, vague, and
analgesia states of the indices respectively. For example,
when all of Index 1, 2, 3 are Ana, the analgesic level is
A4, the most steady state. When all of Index 1, 2, 3 are
Vag or the Index 1 is Noc, the Index 2 is Ana, and Index
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Table 1: Fuzzy rules

Index1=NocXXXXXXXXXXIndex2
Index3

Noc Vag Ana

Noc N4 N3 N2
Vag N3 N1 NA
Ana N2 NA A2

Index1=Vag
XXXXXXXXXXIndex2

Index3
Noc Vag Ana

Noc N3 N1 NA
Vag N1 NA A1
Ana NA A1 A3

Index1=AnaXXXXXXXXXXIndex2
Index3

Noc Vag Ana

Noc N2 NA A2
Vag NA A1 A3
Ana A2 A3 A4

3 is Vag, the analgesic level is NA.

3.4 Analgesic level evaluation

The analgesic evaluation value is calculated by the
min-max inference method and center of gravity defuzzi-
fication, which is one of the widely used techniques in the
fuzzy inference [15]. An example of the obtained evalu-
ation values on the SPI-ANI plane for ED=8 is shown in
Fig.4.

4 Comparison the performance of the pro-
posed method and the existing indices

In this section, we retrospectively compare the pro-
posed method and the existing indices SPI, ED and ANI
utilizing the AUC of ROC curve. We use clinical data of
11 patients from 14 patients in [8] who underwent general
anesthesia for orthopedic surgery in the Kyoto University
Hospital because not all analgesia indices of 3 patients
are available. For calculating the AUC of ROC curve, it is
necessary to define the analgesia and nociceptive pain pe-
riod during surgery. We define nociceptive pain period as
the period of 60 seconds after intubation and extubation,
30 seconds before and after body movement, and both
systolic blood pressure and heart rate exceeding 15% than
baseline; analgesia period is the period between analgesic
infusion and skin incision except for nociceptive period
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Figure 4: An example of the proposed analgesic level ob-
tained from the existing analgesic indices (SPI, ED and
ANI) for ED=8 (the obtained level is shown by color)
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Figure 5: ROC curves of the proposed method and the
existing analgesic indices for a patient

as described above.
Fig.5. shows the ROC curves of the proposed method

and the existing analgesic indices for a patient. In addi-
tion, the results of comparing the median of the AUC of
ROC curve using the proposed method and the existing
indices are shown in Table 2. They show that the pro-
posed method gives a higher AUC than the existing in-
dices. However, there are no significant difference among
the proposed method and the existing analgesia indices
by the Wilcoxon signed-rank test.

5 Discussion

In this paper, we propose an evaluation method of anal-
gesic state combining the existing analgesia indices SPI,
ED, and ANI. Since these existing indices include pulse
amplitude and interval, EEG, FEMG and HRV, the pro-
posed method could be a unified evaluation based on
them. From the comparison results, the proposed method
may reflect patients’ state more appropriately than the ex-

Table 2: The median of the AUC of ROC curve using the
proposed method and conventional indices

The proposed method SPI ED ANI
0.9093 0.8778 0.7073 0.7323
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isting indices.
In our analgesic level evaluation method, we deal with

all the analgesic indices equivalently. However, from Ta-
ble 2, we observe that the reliability of each index may be
different. Therefore, an evaluation method considering
its difference should be studied. Moreover, we defined
the period of analgesia and nociceptive pain only from the
measured data and the time of stimulation. The periods
should be defined from real-time judgement of anesthesi-
ologists during operation. In addition, during surgery, all
of the analgesia indices cannot be obtained due to contact
failure of electrodes, noise from electric knife, compres-
sion of the arm for non-invasive blood pressure measure-
ment, etc. Therefore, in the future research, we will con-
struct an evaluation method in the case of lack of one of
the analgesia indices.

6 Conclusion

In this paper, we develop an assessment method of
analgesic level under general anesthesia based on multi-
ple analgesia indices using fuzzy inference. The result of
comparing the AUC of ROC curve suggests that the pro-
posed method reflects patients’ state more appropriately
than the existing indices.
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Abstract

In this study, a Rational Dilation Wavelet Trans-
form based adaptive and automatic decomposition
algorithm is proposed with the aim of obtaining
a peak energy ratio metric which is used for dis-
criminating monophonic and polyphonic wheezes.
Wheeze signals are analysed by employing vari-
ous set of parameters which control the Q-factor
of wavelets. The peak energy ratio is calculated
for each parameter set from the decomposed sub-
bands and the best representation is chosen. It
is shown that a specific parameter set can not be
achieved to represent monophonic and polyphonic
wheezes. This highlights the importance of an
adaptive method. Support Vector Machine classi-
fier is employed to quantify the performance of peak
energy ratio metric in classification of wheezes. The
peak energy ratios of best time frequency represen-
tations are used as features and 81.4 % accuracy is
achieved.

Keywords Monophonic Wheeze, Polyphonic
Wheeze, Peak Energy Ratio

1 Introduction

The classical stethoscope has some limitation such as
attenuating frequencies above 120 Hz [1] and is unable
to record lung sounds for remote analysis. The need for
an automatic and cheap analysis tool has become vital
during recent years in the diagnosis of lung diseases. The
cooperation between engineering and medicine produces
electronic stethoscope products [2] which benefit medical
doctors by providing objective measurements.

Lung sounds may be categorized into two basic groups
depending on the condition of the pulmonary system:
vesicular for healthy and adventitious for pathological
subjects. Adventitious sounds which are indicators of
various lung diseases are either discontinuous , i.e. crack-
les, or continuous, i.e. wheezes. Unlike crackles,
wheezes are musical and continuous in nature and have
narrow representations in frequency domain.

A lung sound segment is accepted as wheeze accord-
ing to American Thoracic Society (ATS) if its main fre-
quency is higher than 400 Hz and its duration is longer

than 250 ms [3] while according to Computerized Res-
piratory Sound Analysis (CORSA), the main frequency
needs to be higher than 100 Hz and the duration needs
to be longer than 100 ms [4]. On the other hand, in the
study [5], the summarized frequency range for wheezes
is between 100 to 1000 Hz while the minimum duration
is 80 ms.

Wheezes are closely related with diseases such
as asthma and chronic obstructive pulmonary disease
(COPD) [6]. The degree and severity of the disease
is related with wheeze duration in the flow cycle and
wheeze characteristics such as mean frequency, number
of wheezes [6, 7]. Monophonic (MP) wheezes com-
prised of either single pitch frequency or multiple pitch
frequencies starting and ending at different times stem
from single bronchial narrowing and may related with
asthma [8, 9]. Polyphonic (PP) wheezes composed of
harmonically unrelated multiple pitch frequencies start-
ing and/or ending simultaneously originate from multiple
central bronchial compression and are commonly related
with COPD [8, 9]. A MP and a PP wheeze sample in time
and time-frequency (TF) domain may be depicted in Fig.
1. Despite advances made in the analysis of lung sounds,
differentiation of multiple MP and PP wheezes is still an
open problem [10].

In [8], it is reported that there is statistically signif-
icant differences between MP and PP wheezes of the
same pathology (asthma or COPD) using wavelet based
bispectrum and bicoherence features, paving the way
for classification studies. In literature very few stud-
ies can be found in MP-PP classification. In [11],
nine monophonic-polyphonic wheezes are detected using
spectrogram based peak continuity resulting in 89 % ac-
curacy. In [12], 92 % F1 score is reached using domi-
nance spectrogram based on instantaneous frequency on
normal, monophonic, polyphonic and stridor classes al-
though 72 % using the classical spectrogram. A recent
work [13] using time domain based higher order statistics
reached 91.1 % classification accuracy using 102 wheez-
ing sounds.

Our previous study [5] on this classification problem
suggests to explore robust and discriminative features for
PP wheezes. In this work, unlike previous studies which
uses fixed TF resolution based on Fourier transform, we
propose to determine an optimal (better TF resolution)
and adaptive (automatic and tunable) wavelet based tech-
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nique to discriminate MP and PP wheezes in a more ro-
bust and objective manner. Properties of the database is
described in Section 2.1, while Section 2.2 gives details
of the wavelet based method and Section 2.3 introduces
the proposed method, respectively. In Section 3, experi-
mental results and conclusion are interpreted.

2 Methods

2.1 Data Acquisition and Database

The 14-channel data acquisition system [14] designed
in Boğaziçi University Lung Acoustics Laboratory (BU-
LAL) is utilized to record wheeze sounds. 9600 sam-
ples per second sampling rate is employed and each data
recording session lasts 15 seconds. Each patient has a
nose clip and a flow-meter is employed to measure air-
flow. An informed consent is taken from all the patients
before data acquisition. Wheeze sound is collected from
asthma and COPD patients who are under treatment in
the Istanbul Yedikule Teaching Hospital for Chest Dis-
eases and Thoracic Surgery. Database is comprised of
four male and three female subjects at the age of 50∓17.
Wheeze sounds are labeled by visual verification of time
expanded waveforms and auditory inspection by an ex-
pert. The database consists of 121 MP and 110 PP
wheezes, where the duration of each segment is at least
80 ms being coherent with literature.

2.2 Rational Dilation Wavelet Transform

According to the definition, wheezes that occur with a
single peak or with the harmonics of a single basal peak
are called MP wheezes, while those with variable peaks
that differ in harmonics are called PP wheezes [10]. Due
to the similarities between MP and PP wheezes, differ-
entiating multiple MP wheezes from PP wheezes is still
an open and important task. In MP wheezes when the
severity of pathology is very strong, a fundamental (basal
peak with high energy) signal can occur with accompany-
ing harmonics (peaks with lower energy). This MP pat-
tern may be confused with PP wheezes in which various
peaks with relatively close energies show up. In order to
discriminate the MP and PP wheezes in time-scale do-
main, a wavelet transform, in which the frequency selec-
tivity of the sub-bands can be adjusted, is needed. There-
fore in this study, the RADWT [15], which has finer and
adjustable frequency resolution with acceptable redun-
dancy, is proposed as a suitable feature extractor for pro-
cessing lung sounds.

The RADWT [15] is a frequency-domain (FFT based)
design transform which does not employ rational trans-
fer functions and offers greater design flexibility. More-
over, the RADWT is a rational (based on non-dyadic di-
lations), fully discrete, approximately shift-invariant and
easily invertible transform. The non-dyadic (rational) be-
haviour of the RADWT yields to attain a range of Q-
factors and redundancy factors. In the RADWT, the Q-
factor of wavelets, which controls the frequency resolu-
tion of transform, is built upon three positive integers p,

q and s satisfying 1 ≤ p < q and p/q + 1/s ≥ 1, where
p and q are co-prime.

In RADWT, the relation between the scaling
(φ(t))/wavelet (ψ(t)) functions and the low (h0(n))/high
(g0(n)) pass filters can be given as,

φ(t) = (q/p)
1/2
∑
n∈Z

h0(n)φ

(
q

p
t− n

)
(1)

ψ(t) = (q/p)
1/2
∑
n∈Z

g0(n)φ

(
q

p
t− n

)
(2)

Mathematically, the frequency responses of h0(n)
(H0(ω)) and g0(n) (G0(ω)) are given as,

H0(ω) =


√
pq ω ∈ [0, (1− 1

s )
π
q ],√

pqθ(ω−ab ) ω ∈ [(1− 1
s )
π
q ,

π
q ],

0 ω ∈ [πq , π],

(3)

G0(ω) =


0 ω ∈ [0, (1− 1

s )π],√
sθc(

ω−pa
pb ) ω ∈ [(1− 1

s )
π
q ,

p
qπ],√

s ω ∈ [pqπ, π],

(4)

where

a =

(
1− 1

s

)
π

p
, b =

1

q
−
(
1− 1

s

)
1

p
(5)

the transition function θ(ω) is,

θ(ω) =
1

2
(1 + cos(ω))

√
2− cos(ω) for ω ∈ [0, π]

(6)
and θc(ω) is

θc(ω) :=
√
1− θ2(ω) (7)

The transition function, θ(ω), which is used to con-
struct the transition bands of G0(ω) and H0(ω), origi-
nates from Daubechies orthonormal wavelet filters with
two vanishing moments. As it can be seen from above
equations, the bandwidth, center frequency and transition
bands of high-pass and low-pass filters are determined
by using p, q and s values. As the q/p ratio approaches
one, higher number of decomposition levels are needed.
Therefore, the number of subbands (J) must also be con-
sidered as an important parameter in analysis.

2.3 Proposed Adaptive Energy-Ratio Pa-
rameter Selection Method

A single peak and at least two peaks must be ob-
tained when the time-scale representations of MP and PP
wheezes are investigated respectively. However, the lo-
cation, amplitude and bandwidth of these peaks differ for
each sample due to the physiological properties of the
lung and the mechanism of the pathology. This results
in a need for an adaptive and automatic algorithm that
can locate peaks in TF domain for processing MP and
PP wheezes. In the proposed algorithm, the RADWT is
applied to MP and PP wheezes by using a set of various
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Figure 1: Time domain and time-frequency domain representation of MP (left) and PP (right) wheezes

p, q, s and J values, which are given in Table 1 with an
aim to achieve an optimum representation. In this sense
optimum representation is defined as two distinct peaks,
where one belongs to basal peak in MP wheezes or first
peak in PP wheezes and the other belongs to weak har-
monics in MP wheezes or second peak in PP wheezes.
Then a metric named as the peak-energy-ratio (PER) is
defined as,

PER =
Energy of first peak

Energy of second peak
(8)

The RADWT is applied to a wheeze with one of 22 var-
ious p, q, s and J combinations as given in Table 1. For
each set, two distinct peaks are found and the PER is cal-
culated. As a result, for one signal, 22 different PER val-
ues are obtained. The minimum PER value is accepted as
the indicator of best representation because it means that
two peaks are correctly located while preserving maxi-
mum amount of their energies. In Fig. 2, for the same
MP and PP wheezes given in Fig. 1, the two distinct
peaks and corresponding p, q, s and J values are pre-
sented. It is seen that for MP wheezes high PER values
are obtained. In contrast, for PP wheezes, relatively small
PER values are obtained. In order to quantify the perfor-
mance of the proposed method, the chosen PER metrics
are employed as features for discriminating MP and PP
wheezes. Support Vector Machines (SVM) classifier [16]
is used as the learning method with leave one out cross
validation method.

3 Experimental Results and Conclusion

In Fig. 3, the percentages (number of samples for a
specific parameter set/number of total samples) for the
distribution of total, MP and PP wheezes changing with
various p, q, s and J values are given. On the left-side the
relatively low Q-factor combinations and on the right side
relatively higher Q-factor combinations are represented
which means frequency resolution increases from left to
right. The order of p, q, s and J values used in Fig. 3 is the
same with the order of Table 1. For example the first set
number in Fig. 3 corresponds to the first column in Table
1 (p = 2, q = 3, s = 2, J = 8). It is seen that, in order

to achieve the best TF representation, which is obtained
with the algorithm given in Section 2.3, a specific param-
eter set can not be obtained. For almost all parameter
sets, except the first set (low Q-factor, low frequency res-
olution), optimum TF representation for a wheeze sample
is achieved. Therefore, it is concluded that an adaptive
and automatic system is needed for optimum localization
of different peaks due to patient specific TF properties
of wheezes. Additionally, the general accuracy of SVM
classifier is obtained as 81.4 % when the linear kernel is
employed. This shows that PER metric can be used as
an indicator for discriminating MP and PP wheezes. In
future, to increase the accuracy, different kernels in SVM
and other classifiers can be utilized. Moreover, the effect
of preprocessing steps, such as de-noising, and ensemble
learning methods at the classifier and feature extraction
level (with additional TF features) can be explored.
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Abstract 

LF/HF has been used as a maker of sympathetic 
predominance in cardiac autonomic activity. 
Decrease of LF / HF is associated with increased 
mortality risk. Laboratory studies have reported 
that LF/HF increases with standing and decreases 
with lying.  Therefor we hypothesized that LF/HF in 
ambulatory monitoring is associated with the ratio 
of time in lying position during the monitoring 
 (%lying ratio). Results, the decrease in LF/HF with 
advancing %lying time quartile was  significant 
(P<0.001). Decreased LF/HF in  ambulatory 
ECG monitoring could be the result at  least 
partly of the fact that patients spent longer 
time in lying position during the monitoring. 

Keywords   Heart Rate Variability, LF/HF, 
3-axis accelerometer

1   Introduction 

Low-frequency-to-high-frequency ratio (LF/HF) of 

heart rate variability (HRV) has been used as a maker of 

sympathetic predominance in cardiac autonomic 

activity. In most of major prospective studies on the 

prognostic value of 24-hr HRV after acute myocardial 

infarction[1, 2], however, have reported that decrease, 

rather than increase, in LF/HF is associated with 

increased mortality risk, which is contrary to the 

general concept of cardio-protective effects of 

sympathetic suppression. 

Laboratory studies have reported that LF/HF 

increases with standing and decreases with lying[3]. We 

therefor hypothesized that decreased LF/HF in 

ambulatory ECG monitoring is associated with the 

length of time when patients spent in lying position 

during the monitoring. We examined this hypothesis 

with ambulatory ECG big data built by Allostatic State 

Mapping by Ambulatory ECG Repository (ALLSTAR) 

project, which has started since 2009 and is gathering 

>50,000/year of 24-hr ECG data from the entire Japan.

Among >300,000 data accumulated, we could estimate

patient’s posture during the monitoring in 47,624 data

recorded with Holter recorders having a built-in 3-axis

accelerometer (Cardy 303 pico, Suzuken Co., Japan).

2   Methods 

used 42,483 data that were recorded in patients ≥25 yr  

and the ECG showed sinus rhythm for >19.2 hr (80% of 

24 hr) for this study. These data were recorded between 

April 2012 and July 2014 in 18,944 men (age, 67 ± 14 

yr) and 23,539 women (68 ± 15 yr). From 3-axis 

accelerograms, we estimated the ratio of time in lying 

position (%lying time) during the monitoring, by which 

the patients were divided into four quartile groups (Q1-

4, Table). We compared LF/HF and other indices of 

HRV among the quartile groups.  

3 Results 

 LF/HF decreased progressively with advancing quartile 

of %lying time. LF/HF correlated negatively with age 

in both genders (r = -0.50 and -0.43 for men and women, 

respectively) and %lying time positively with age (r = 

0.21 and 0.26 for men and women, respectively). Also, 

there is significant gender differences in both LF/HF 

(least-square mean ± SEM adjusted for age,0.59± 0.01, 

0.58 ± 0.01 for men and women, respectively; P 

<0.001) and %lying time (47.4 ± 0.1, 43.7± 0.1; P 

<0.001). Nevertheless, the decrease in LF/HF with 

advancing %lying time quartile was significant (P 

<0.001), even when the effects of age and gender were 

adjusted.  

4 Conclusions 

Decreased LF/HF in ambulatory ECG monitoring could 

be the result at least partly of the fact that patients spent 

longer time in lying position during the monitoring. 

References 

[1] Rovere MT, Bigger JT, Jr., Marcus FI, Mortara A,

Schwartz PJ, Investigators A. Baroreflex sensitivity and

heart-rate variability in prediction of total cardiac

mortality after myocardial infarction. Lancet.

1998;351:478-84.

[2] Huikuri HV, Mäkikallio TH, Peng CK, Goldberger AL,

Hintze U, Moller M, Grp DS. Fractal correlation

properties of R-R interval dynamics and mortality in

patients with depressed left ventricular function after an

acute myocardial infarction. Circulation. 2000;101:47-53.

[3] Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D,

Gordon D, Kilborn KM, Barger AC, Shannon DC,

Cohen RJ, et al. Assessment of autonomic function in

humans by heart rate spectral analysis. Am J Physiol.

1985;248(1 Pt 2):H151-3.

Out of 47,624 ECG data with 3-axis accelerogram, we 

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

167



On the Heart-Rate Signal Provided by the Zephyr BioHarness 3.0 

D. Nepi
1
, A. Agostinelli

1
, E. Maranesi

1
, A. Sbrollini

1
, M. Morettini

1
, F. Di Nardo

1
, S. Fioretti

1
, L. Burattini

1

1
Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy 

Abstract 

The BioHarness 3 system (BH3) by Zephyr is a 
wearable cardiac sensor specifically designed for 
training optimization of professional athletes. BH3 
records the electrocardiogram (BH3_ECG) and the 
heart-rate signal (BH3_HRS). Specifically, 
BH3_HRS is neither the popular tachogram nor 
the direct not-uniformly sampled heart-rate 
sequence as function of time. Consequently, the 
aim of the present study is to gain more insights 
on BH3_HRS that, if found reliable, would allow a 
future evaluation of the possibility of a clinical use 
of the sensor for cardiac risk evaluation. Data were 
acquired from an amateur athlete (male, 25 years 
old) during a 5-min rest followed by a 10 min 
exercise. R-peak detection was performed on 
BH3_ECG, and the obtained heart-rate signal 
(HRS) was low-pass filtered using the following six 
filters: 3-, 4-, and 5-sample averages and 0.30 Hz, 
0.35 Hz, and 0.40 Hz 6th order Butterworth low-
pass filters. The filtered HRSs were then 
compared to BH3_HRS in terms of correlation 
coefficient (ρ), mean square error (MSE), resting 
heart-rate variability (HRV) and exercise maximum 
heart rate. Results indicate that the HRS closest to 
BH3_HRS was obtained with the 3-point average 
(ρ=0.9688-0.9991, MSE=0.45-0.47 mV

2
;

comparable resting HRV and exercise maximum 
heart rate). 

Keywords Heart rate analysis, Sports-related sudden 

cardiac death, Wearable sensors. 

1 Introduction 

Physical activity has beneficial effects on the 

cardiovascular system [1]. However, high-intensity 

exercise also associates to malignant cardiac events, 

including sports-related sudden cardiac death (SRSCD) 

[2]. SRSCD is defined as a “death occurring during sport 

or within 1 hour of cessation of sports activity” [3]. In a 

study on the general population (thus including both 

competitive and amateur athletes), SRSCD incidence 

was estimated to be 4.6 cases per million per year, with 

6% of cases occurring in young competitive athletes [3]. 

Although the number of athletic sudden deaths is 

relatively small, SRSCD represents an important and 

emotionally charged public health issue [4]. High-

intensity exercise may act as a SRSCD trigger in the 

presence of underlying cardiovascular diseases [5]. 

Thus, specific screening programs for the identification 

of cardiovascular abnormalities predisposing to SRSCD 

in athletes are a priority [6]. Still, recommendations for 

such screening programs are usually conceived only for 

competitive athletes, so that amateur athletes are 

typically left to optional evaluations of their health. 

Wearable cardiac monitoring sensors have recently 

become very popular among athletes. They usually 

measure the instantaneous heart rate (HR) and 

sometimes the HR signal (HRS), and they are typically 

used for training optimization. Several HR and HR-

variability (HRV) parameters, easily obtainable from 

HRS, are universally recognized as indicators of sudden 

cardiac death [7, 8]. Thus, such wearable cardiac sensors 

could also be useful for SRSCD risk evaluation if the 

providing HRSs would result clinically reliable and 

accurate. The BioHarness 3 system (BH3), promoted by 

Zephyr, is a commercial advanced wearable sensor for 

physiological monitoring during sport. It acquires 

several biological data among which the 

electrocardiogram (ECG) and HRS. We have observed, 

however, that HRS by BH3 is neither the popular 

tachogram nor the direct not-uniformly sampled HR 

sequence as function of time. Consequently, the aim of 

the present study is to gain more insights on HRS by 

BH3 that, if found reliable during both rest and exercise, 

would allow a future evaluation of the possibility of a 

clinical use of the sensor (beside its actual training use) 

for SRSCD prediction.  

2 Methods 

2.1 The BioHarness 3 by Zephyr 

The BH3 wearable monitoring device by Zephyr 

(www.zephyranywhere.com), now a part of Medtronic, 

is a lightweight, chest-worn and strap system for real-

time wearable physiological monitoring that 

incorporates, among others, ECG sensors. It may 

operate in radio frequency transmitting mode for live 

viewing of data or in logging mode for later download 

of the data. Among the output signals there are a single-

lead ECG tracing (BH3_ECG; mV) sampled at 250 Hz, 

and a HRS (BH3_HRS; bpm) sampled at 1 Hz. 

2.2 Data Acquisition 

Data were acquired from an amateur athlete (male, 25 

years old) before and during a running test. Particularly, 

the athlete, after having worn BH3 set in logging mode, 

stayed still for about 5 minutes for resting data 

acquisition, and run on a treadmill for 10 minutes at 9.5 
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Km/h for exercise data acquisition. Rest as well as 

exercise BH3_ECGs and BH3_HRSs were eventually 

downloaded on a PC for subsequent processing. The 

present research was undertaken after obtaining an 

informed consent from the subject, in compliance with 

the ethical principles of Helsinki Declaration and 

approved by the institutional expert committee.  

2.3 Signal Processing 

Rest and exercise BH3_ECGs were elaborated (Fig.1) 
in order to get HRSs to be compared to rest and exercise 
BH3_HRSs. Initially, BH3_ECGs were processed for R-
peak detection using the Pan-Tompkins algorithm [9]. 
By considering that instantaneous HR and RR interval 
are linked by the following equation: 

,
interval RR

60
HR       (1) 

the HR sequences computed from the RR sequences 
were not-uniformly sampled (being RR-interval not 
constant) when represented as functions of time. After 
uniform resampling at 1 Hz, the resampled HRSs 
(RSMPL_HRS) were submitted to the six low-pass 
filtering procedures, namely 3-, 4-, and 5-sample finite 
impulse response  averages (AVG3,  AVG4 and  AVG5, 
respectively) and 0.30 Hz, 0.35 Hz, and 0.40 Hz infinite 

impulse response 6
th
 order Butterworth low-pass filters 

(LPB030, LPB035 and LPB040, respectively) in order 
to get six HRSs (AVG3_HRS, AVG4_HRS, 
AVG5_HRS, LPB030_HRS, LPB035_HRS and 
LPB040_HRS, respectively) to be compared to 
BH3_HRS. All processing procedures were 
implemented in MATLAB. 

2.4 Signal Comparison 

Comparison between rest and exercise BH3_HRS and 
HRSs was performed by computing a set of parameters 
(PRM) which included: the correlation coefficient (ρ), 
the mean square error (MSE; mV

2
), a set of HRV 

parameters measured at rest [7], and maximum HR 
(maxHR) during exercise [10-12]. The set of HRV 
parameters measured at rest included: 
• meanHR (ms) =  mean HR; 
• SDNN (ms) = standard deviation of normal RR 
intervals (NN); 
• RMSSD (ms) = root mean square of the successive 
NN intervals; 
• LF/HF ratio: ratio between low-frequency and high-
frequency components of the HRS power spectrum.  

Eventually, an optimization process based on ρ 
maximization, MSE minimization, and HRV parameters 
and maxHR differences  minimization was performed in 
order to identify the HRS closest to BH3_HRS (Fig. 1). 

 

 

Figure 1. Block diagram of the procedure to find the low-pass filtered HRS closest to BH3_HRS.  
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3 Results 

Already after resampling ρ values, indicating 

similarities in the signals trends, become quite high 

(>0.87), with ρ at rest being lower than under exercise 

(ρ=0.8745 vs ρ=0.9983; Table 1). However, ρ value 

typically increased after any low-pass filtering (only 

two exceptions for AVG4_HRS and AVG5_HRS under 

exercise). Analogously but oppositely, MSE values, 

indicating signals amplitudes similarities, were 

maximum after resampling, with rest MSE being much 

higher than exercise MSE (MSE=18.51 mV
2
 vs 

MSE=0.84 mV
2
; Table 1), and tended to decrease after 

low-pass filtering (only two exceptions for AVG4_HRS 

and AVG5_HRS under exercise). Thus, according to ρ 

and MSE only, AVG3_HRS was the closest to 

BH3_HRS, with resting ρ=0.9688 and MSE=4.47 mV
2
, 

and exercise ρ=0.9991 and MSE=0.45 mV
2
. 

Comparison of the HRV parameters measured at rest 

(Table 2) indicates that meanHR was always correctly 

quantified (93 bpm), while SDNN and RMSSD usually 

reported differences of few ms (SDNN: 58 ms vs 57-63 

ms; RMSSD: 16 ms vs 13-24 ms). Thus, according to 

these two time-domain parameters, AVG4_HRS was 

the closest to BH3_HRS, since it provided the same 

SDNN value (58 ms) and an RMSSD (15 ms) value that 

differs of only 1 ms from BH3_HRS. AVG3_HRS was 

also a quite close to BH3_HRS, since provided SDNN 

(60 ms) and RMSSD (17 ms) values that differ 2 ms 

and 1 ms, respectively. Instead, according to the 

frequency-domain HRV LF/HF parameter, AVG3_HRS 

was the closest to BH3_HRS (2.7 vs 2.9). Eventually, 

all HRSs provided exercise maxHR values close to that 

provided by BH3_HRS (maximum difference: 1 bpm; 

Table 2), with AVG3_HRS and AVG4_HRS matching 

it (maxHR= 174 bpm). Thus, taking into account all HR 

parameters, AVG3_HRS was the closest to BH3_HRS 

(Fig.2). 

4 Discussion and Conclusion  

The present paper represents a step of a process 

finalized to clinically validate the signals at the output 

of BH3 [13]. BH3_HRS is a filtered version of the RR 

sequence obtained after R-peak detection from 

BH3_ECG. The knowledge of such filtering procedure 

would allow an indirect validation of BH3 since the 

procedure could be  applied to large databases of 

pathological ECGs in order to assess the ability of the 

processed data (which would result equivalent to the 

BH3 data) to identify cardiovascular risk. Thus, if the 

procedure would result reliable, BH3 could be used for 

clinical investigations in athletes beside training 

purposes.  

According to our results, BH3_HRS is a low-pass 

filtered version of the RR-sequence and, among the 

filters considered here, AVG3_HRS is the closest to it, 

in terms of both morphology (measured in terms of ρ 

and MSE) and clinical content (measured in terms of 

HRV parameters at rest and maxHR under exercise).  

Recording 

conditions 

HR Signal  

Processing 
ρ 

MSE 

(mV
2
) 

Resting 

RSMPL_HRS  0.8745 18.51 

AVG3_HRS 0.9688 4.47 

AVG4_HRS 0.9672 4.58 

AVG5_HRS 0.9295 9.78 

LPB03_HRS 0.9614 5.92 

LPB035_HRS 0.9609 6.01 

LPB040_HRS  0.9606 6.06 

Exercise 

RSMPL_HRS 0.9983 0.84 

AVG3_HRS 0.9991 0.45 

AVG4_HRS 0.9968 1.69 

AVG5_HRS 0.9923 4.33 

LPB030_HRS 0.9989 0.53 

LPB035_HRS 0.9987 0.62 

LPB040_HRS 0.9985 0.71 

AVG: average; LPB: Butterworth low-pass filter. 

Table1. Correlation coefficient () and mean squared 

error (MSE) values between HRS provided by the 

BioHarness 3 and the HRS obtained after various signal 

processing procedures, in both resting and exercise 

conditions. 

It is interesting to observe that BH3_HRS and 

AVG3_HRS were closer during exercise than during 

resting (Table 1). This finding could be related to the 

fact that at rest short-term HRV (that is HR variations 

within few beats) is higher than exercise short-term 

HRV (Fig.2) and BH3 may have integrated some 

constrain that force consecutive RR-intervals to be 

within some ranges (in Fig. 2 it can be seen that the 

higher deviations of AVG3_HRS from BH3_HRS 

occurs in correspondence of strong HR variations of 

BH3_HRS).  

Another cause of discrepancy between BH3_HRS 

and AVG3_HRS could be related to the occurrence of 

errors during the R-peak detection phase. If we visually 

checked the correctness of all R-peaks positions 

detected from BH3_HRS, the same cannot be done for 

the R peaks detected by the BH3, since such data is not 

available. Clearly, difference in R-peak detection will 

reflect in differences in the computation of the HRS. 
 

 
Figure 2. Superimposition of 5-min of BH3_HRS (solid 

line) and AVG3_HRS(dotted line) in resting (upper 

panel) and exercise (lower panel) conditions). 
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HR Signal 

Processing 
Resting Exercise 

 
meanHR 

(bpm) 

SDNN 

(ms) 

RMSSD 

(ms) 
LF/HF 

maxHR 

(bpm) 

BH3_HRS 93 58 16 2.9 174 

RSMPL_HRS 93 63 24 1.8 175 

AVG3_HRS 93 60 17 2.7 174 

AVG4_HRS 93 58 15 3.8 174 

AVG5_HRS 93 57 13 5.7 173 

LPB030_HRS 93 60 17 3.3 175 

LPB035_HRS 93 61 18 2.6 175 

LPB040_HRS  93 61 19 2.2 175 
AVG: average; LPB: Butterworth low-pass filter; RMSSD: root mean square of successive NN intervals. SDNN:= NN interval standard deviation  

 

Table2. Values of heart rate variability parameters (meanHR, SDNN, RMSSD, and LF/HF) measured during resting, 

and maximum HR (maxHR) measured during exercise. 

 
 

Only one athlete was used in this preliminary study 

because it allowed a direct (not statistical) comparison 

between signals. Future studies on a larger set of data 

are needed to confirm the preliminary finding of this 

study according to which BH3_HRS is a close 

approximation of AVG3_HRS.  
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Abstract 

In a physiological big data project named 
Allostatic State Mapping by Ambulatory ECG 
Repository (ALLSTAR), we developed a large 
database of 24-hr physical activities in 19,345 men 
(age, 65 ± 17 yr) and 23,985 women (67 ± 17 yr) 
who underwent ambulatory accelerometer and 
electrocardiographic monitoring in all over Japan. 
We examined if regional difference in physical 
activity is associated with the inter-prefecture 
ranking of healthy life expectancy (HALE) reported 
by the Japanese Ministry of Health, Labour and 
Welfare in 2013. Analysis of covariance adjusted 
for the effect of age revealed that physical activity 
level decreases progressively in the order of 
prefectures grouped into upper, middle, and lower 
tertiles of HALE for both men and women (P 
<0.001 for both). When the subjects were divided 
into every 10s yr of age, the correlation between 
the rankings of physical activity and HALE was 
observed in 40s to 60s for men and in 50s to 60s 
for women. Our observations support the putative 
association between physical activity level and 
HALE. 

Keywords Physical activity; healthy life expectancy;
physiological big data

1 Introduction 

To improve our quality of life in aging societies, we 
need extend our healthy life expectancy (HALE) close 
to our average life span. Although reduction in daily 
physical activity has been proposed as a major risk for 
shortening HALE, convincing evidence is lacking.  

Allostatic State Mapping by Ambulatory ECG 
Repository (ALLSTAR) Research Group has been 
accumulating 24-hr Holter ECG and physical activity 
data since 2009 and has built a big data comprising 
>300 thousands of data, which are associated with date
and geographic data (postal codes)[1]. Among data
already collected, 43 thousands were recorded with
micro Holter recorders with built-in 3-dimensional
accelerometers, which allowed us to analyze the
physical activities and body postures in daily life.

In this study, we examined if regional difference in 

physical activity is associated with the inter-prefecture 
ranking of HALE reported by the Japanese government. 

2 Methods 
 We studied 3-dimensional acceleration data 
obtained with Holter ECG recorders (Cardy 303 pico, 
SUZUKEN CO., LTD) that were collected between 
April 2012 and July 2014 at three ECG analysis centers 
(Sapporo, Tokyo, and Nagoya) in Japan. We used data 
only from subjects >20 yr who have agreed with the 
usage of their data for this study. The study protocol has 
been approved by the Research Ethics Committee of 
Nagoya City University Graduate School of Medical 
Sciences (No. 709). 
 The accelerations were measured for left-to-right, 

caudo-cranial, and postero-anterior axes as X, Y, and Z 
values, respectively and sampled at 31.25 Hz. Time 
series of X, Y, and Z were resampled at 10 Hz and 
combined into a variable, AC (t), with the equation (1). 
After removing direct current component by a high-pass 
filter, AC(t) was rectified, averaged over 24 hr, and 
converted into common logarithmic value, which was 
used as the index of physical activity (PA). 

AC(t) ＝sqrt(x2(t)＋y2(t)＋z2(t)) ・・・ (1) 

The data in each gender were divided into 5 groups 
with subject’s age; 20-39, 40-49r, 50-59, 60-64, 65-69 
yr. Then, within each age group, data were further 
divided into the tertiles, upper (L1), middle (L2), and 
lower (L3), according to the inter-prefecture HALE 
ranking published by the Japanese Health, Labour, 
Welfare Ministry [2]. 

PA was compared among L1, L2, and L3 by 
ANCOVA using age as covariate. Type 1 error level 
was set at 0.05 in these analyses. We used Med Calc 
Ver.14.12.0 for the statistical analysis. 

3 Results 

Data were obtained from 18875 men (age, 66 ± 14 
yr) and 23541 women (69 ± 15 yr) in allover Japan. 
ANCOVA revealed that PA was highest in the area of 
highest HALE ranking and lowest in the lowest HALE 
ranking in both sexes. ANOVA in each age group 
revealed that associations of PA with HALE ranking 
exist in all age groups but 20-39 yr in men and in 20-39, 
60-64, and 65-69 yr in women (Fig. 1). Additionally,
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Fig. 1. Physical activity (PA) in the areas divided by the 
inter-prefecture HALE ranking by gender and age. Fine 
dotted, horizontal hatched, and coarse dotted bars 
indicate upper, middle, and lower tertiles of HALE in 
each age group. Data are mean ± SE. **P <0.01, *P 
<0.05. 
 
 
 PA was greater in female than in men (P <0.01) and 
this difference was observed in all age groups (P <0.05). 

4 Discussion 

We found that PA is greater in women than in men 
for all age. Also, PA was greater in the areas of higher 
HALE ranking and this relationship existed >40 yr in 
men and >60 yr in women. Our findings seem to 
provide the indirect evidence that supports for the 
hypothesis that physical activity level is associated with 
HALE. 

In this study, we used physical activity data obtained 
from patients who underwent Holter ECG for a certain 
clinical reason. Therefore, there was sampling bias that 
only those with the clinical reason for ambulatory ECG 
examination were selected. Nevertheless, we found that 
they were positively associated with regional difference 
in HALE. One may speculate that there may be the 
regional characteristics of physical activity that are less 

affected by such clinical problems. 
We are unable to exclude possibility that the 

observed association between physical activity and 
HALE may be mediated by other factors such as 
regional differences in socioeconomic environment.  
Because L3 included large cities such as Tokyo and 
Osaka, there could be differences in residential 
amenities, economic force, and type of business from 
areas in L1 and L2, which may cause the differences 
both in lifestyle and HALE. 

5 Conclusions 

Regional difference in PA is associated with that in 
HALE in men after 40 yr and in women after 60 yr of 
age. 

Acknowledgment 

 A part of this study was reported in the 78th 
National Convention of IPSJ, 2016 [3,4]. 

References 

[1] Allostatic State Mapping by Ambulatory ECG Repository 
(ALLSTAR) Research, http://www.med.nagoya-
cu.ac.jp/mededu.dir/allstar/ 

[2] Progress of each goal in Healthy Japan 21 (2nd stage), the 
Ministry of Health, Welfare, and Labour, 
http://www.mhlw.go.jp/file/05-Shingikai-10601000-
Daijinkanboukouseikagakuka-Kouseikagakuka/sinntyoku.pdf 

[3] Yuda, E., Yoshida, Y., Hayano ., ALLSTAR Research 
Group., Nocturnal Life Style and Short Healthy Life 
Expectancy: Physiological Big Data Project, Allostatic State 
Mapping by Ambulatory ECG Repository (ALLSTAR): The 
78th National Convention of IPSJ, March 10-12 (2016) 

[4] Yuda, E., Yoshida, Y., Hayano, J., ALLSTAR Research 
Group., Regional Difference in Physical Activity is 
Associated with the Ranking of Healthy Life Expectancy 
among Prefectures in Japan: The 78th National Convention of 
IPSJ, March 10-12 (2016) 

 

 

Address for correspondence: 

Emi Yuda 
Department of Medical Education 
Nagoya City University Graduate School of Medical Sciences 
Emi21@med.nagoya-cu.ac.jp 
 

 

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

173



Estimation Method of Amount of Swallowed Water from Swallowing Sounds 

M Imura1, H Nakafuji2, S Yoshimoto2, O Oshiro2 

1School of Science and Technology, Kwansei Gakuin University, Japan; 
2Graduate School of Engineering Science, Osaka University, Japan; 

Abstract 

When humans ingest something, swallowing 
sounds occur at the larynx. Because these 
swallowing sounds can be measured 
noninvasively, they can be used to investigate 
swallowing ability and swallowing habits. The 
purpose of this study is to estimate how much 
water is swallowed by analyzing swallowing 
sounds. In this research, the swallowing sounds 
were measured on the skin surface of the thyroid 
cartilage and signal processing methods such as 
linear prediction analysis and the wavelet 
transform were applied to the swallowing sounds. 
The results comprised feature values that may 
reflect how much water is swallowed, and the 
number of feature values was reduced by principal 
component analysis. By using support vector 
machines, we achieved accurate estimation of 
amount of swallowed water with a probability more 
than 60%. 

Keywords Amount of Water, Biomedical Measurement,
Sound Signal Processing, Swallowing Sound 

1 Introduction 

Human beings take in air, foods, and water through 
the mouth, thus producing bioacoustic sounds such as 
masticatory sounds and respiratory sounds. In particular, 
when something is ingested, swallowing sounds occur 
at the larynx. Swallowing sounds can be measured 
noninvasively, and so can be employed to investigate 
the swallowing function [1]. Several researches of 
analyzing swallowing sounds have been done [2-4]. 
However, the quantity of food or beverage swallowed 
cannot be estimated. 

The purpose of this study is to analyze swallowing 
sounds to estimate how much water is swallowed. If the 
amount of swallowed water can be measured, the 
control of water intake can become easier for artificial 
dialysis patients, by monitoring the amount of 
swallowed water on a daily basis. In addition, 
monitoring the amount of swallowed water can reduce 
the incidence of heat stroke. 

We propose an estimation method for the amount of 
swallowed water. First, swallowing sounds are 
measured on the surface of the thyroid cartilage. Second, 
signal processing methods are applied to the 
swallowing sounds, and feature values, which reflect 

how much water is swallowed, are extracted. Finally, 
we examine the relationship between the amount of 
swallowed water and the feature values. 

2 Characteristics of Swallowing Sounds 

One swallow is made up of three phases [5]. In the 
first phase of swallowing, the bolus is formed and 
transported to the pharynx. In the second phase of 
swallowing, the bolus moves through the pharynx to the 
esophagus. In the final phase of swallowing, the bolus 
is transported to the stomach by peristaltic movement of 
the esophagus. Swallowing sounds occur during the 
second phase of swallowing. Swallowing sounds 
usually have a spectrum between 30 and 1000 Hz. 

Videofluoroscopic examination that is used 
simultaneously with measurement of swallowing 
sounds revealed that swallowing sounds are composed 
of three parts [6]. In the first part of swallowing sounds 
(the first sound), the sound is raised by elevation of the 
larynx and influx of the bolus to the upper pharynx. In 
the second part (the second sound), the sound is raised 
by the influx of the bolus under the pharynx and the 
opening of the esophagus orifice. In the final part (the 
third sound), the sound is raised by the descent of the 
larynx. 

Swallowing sounds can be measured noninvasively 
and easily. However, swallowing sounds are subject to 
ambient noise or biosounds. Researches have been 
performed to reduce the influence of such noise and 
extract swallowing sounds precisely [7].  

3 Methods 

In this section, the proposed method, which uses 
swallowing sounds to estimate the amount of 
swallowed water, is described. 

3.1 Overall Process 

Fig. 1 shows the flowchart of the proposed method. 
First, sound signal processing is applied to the 
measured swallowing sound in order to extract feature 
values, which may reflect how much water is 
swallowed. Second, the number of feature values is 
reduced by principal component analysis (PCA), and 
swallowing sounds are classified by a support vector 
machine (SVM), depending on the amount of water 
swallowed. 
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Measurement of Swallowing Sound

Extraction of Feature Values

Smoothing Linear Prediction Analysis

Fourier Transform Wavelet Transform

Dimension Reduction

Amount Estimation

PCA

SVM

 
Figure 1: Flowchart of proposed method. 

3.2 Measurement of Swallowing Sounds 

The swallowing sounds made by three subjects (all 
men in their twenties) were measured on the skin 
surface of the thyroid cartilage with a microphone 
(ECM8000，BEHRINGER) when 5 mL, 10 mL, and 
15 mL water were swallowed, respectively, 50 times. 
The measured swallowing sound signal is fed into the 
PC through an A/D converter. The sampling rate and 
resolution were 44,100 Hz and 16 bits, respectively. 
One swallowing sound signal has 40,000 samples. Fig. 
2 shows an example of a swallowing sound signal. 

 
1st sound 

A
m
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.]

Time [sec]

2nd sound 3rd sound 

 
Figure 2: Swallowing sound sample. 

3.3 Sound Signal Processing 

For the sound signal processing, we employ several 
methods to extract the feature values. 

3.3.1 Smoothing 

A swallowing sound signal has N segments 
1 2{ , , , }Nx x x . The signal ix is smoothed to signal iy , 

which can be expressed as 

 
/2

/2

1
1i i j

m

j m
y x

m −
+

=

=
+ ∑  , (1) 

where 1,2, ,j N=  , and m denotes a fixed smoothing 
size. We adopted two different smoothing sizes; 

300m = and 600m = . The smoothing with the 
parameter 300m =  can analyze the details of the second 

sound, and the smoothing with 600m =  can examine 
the relationships between the first, second, and third 
sounds. Fig. 3 and Fig. 4 show the respective results. 

From the results with 300m = , two peak values in the 
second sound, 1 2,S S , and the interval between the two 
peaks T were extracted as feature values. From the 
results with 600m = , peak values in three sounds and 
the intervals between the respective peaks 

, , , , ,a b c a b cS TS S T T , and the ratios of these values 
, ,/ / / /,a b b c c a a cS SS S S S T T  were also extracted as 

feature values. 
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Figure 3: Result of smoothing (m=300). 
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Figure 4: Result of smoothing (m=600). 

 
3.3.2 Linear Prediction Analysis 

In linear prediction analysis (LPA), a signal value ix  
is estimated by the linear sum of the number µ  of 
adjacent segments 1 2, ,{ , }i i ixx x µ− − − . Hence, ix  is 

 1 1 2 2i i i i ix dd x d ex xµ µ− − −++ + + = ,  (2) 

where 1 2, , ,d d dµ… are linear prediction coefficients. 
The 2nd sound is also analyzed by LPA and linear 
prediction coefficients are denoted as 1 2, , ,d dd µ′…′ ′ . The 
best value of parameter µ was determined to minimize 
the final prediction error (FPE). FPE( )µ is expressed as 

 2FPE( ˆ) N e
N

µµ
µ

+
=

−
,  (3) 

where N  is the number of data points, and 2ê  is the 
mean residual. As a result, FPE( )µ  takes a minimum 
value around 60µ = , so we got 120 feature values. 
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3.3.3 Discrete-Time Fourier Transform 

The frequency components of the swallowing sound 
signals are obtained by the discrete-time Fourier 
transform (DTFT). The Fourier component kX  is 

 ( )
1

0
p /ex 2

N

i
i

k iX kx Nj π
−

=

= −∑ ,  (4) 

where j  is the imaginary unit, N  is the number of data 
points, and 0,1, , 1Nk = … − . The DTFT can express at 
most the half frequency of the sampling rate. The 
frequency feature values of all the segments are 
examined by the DTFT. 

The rectangular window function iw  was multiplied 
by the swallowing sound signals ix , and the DTFT was 
applied to the signals i iw x . Fig. 5 shows the typical 
result of the DTFT. The maximum peak value of the 
spectrum G , the maximum peak frequency 1f , the sum 
of powers tG  between 25 Hz and 3200 Hz, and the 
barycentric frequency mf were extracted as feature 
values.  
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Figure 5: Result of DTFT. 

 
In addition, 1/3 octave analysis is applied to the 

results of the DTFT. The band between 25 Hz and 3200 
Hz is divided into 25 bands every 1/3 octave. The 
ratios 21 2 1, , ,c cc …  of the sums of powers between the 
respective band and the sum of powers tG  were also 
extracted as feature values. 

3.3.4 Wavelet Transform 

The time-frequency components of the swallowing 
sound signals are obtained by the wavelet transform. 
The wavelet transform ( , )W b a  is 

 
1

0
( , ) 1 N

t
t

t bW b a x
aa

ψ
−

=

− 
 
 

= ∑  , (5) 

where ( )tψ  is the mother wavelet, and a  and b  denote 
the frequency and the time shift, respectively. In 
addition, the scalogram ( , )P b a is expressed by 

 2( , ) ( , )P b a W b a=  . (6) 

The frequency feature values of the segments at some 
time are examined by the wavelet transform. 

The wavelet transform was applied to the swallowing 
sound signals. The Gabor wavelet was used as the 
mother wavelet. Fig. 6 shows the results of the wavelet 
transform. From the results, the maximum peak value of 
the scalogram maxP  and the maximum peak frequency 

2f  were extracted as feature values. 
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Figure 6: Result of wavelet transform. 

3.4 Classification 

By the signal analysis methods described in the 
previous section, we can obtain 160 feature values. To 
reduce the number of the feature values, PCA is applied. 
We regard the estimation of amount of swallowed water 
as a set of 2-class classification problems. Using a 
support vector machine (SVM), we classify the amount 
of swallowed water to one of the following classes: 
5mL, 10mL or 15mL. 

4 Result 

In this section, we describe the result of the proposed 
method. 

PCA was applied to the extracted feature values, and 
the 160 feature values were reduced to 15 values. The 
cumulative contribution ratio from the 1st component to 
the 15th component was 91.1%. Table 1 shows the 
three most affected values in the respective components. 

Component 1st 2nd 3rd 
1st 43d  44d  45d  
2nd 19d ′  20d ′  18d ′  
3rd 12d ′  13d ′  11d ′  
4th 1d  2d  59d ′  
5th 17c  mf  20c  
6th 19c  1d ′  2d ′  
7th 59d  59d ′  20c  
8th /c aS S  21c  cS  
9th aT  tG  cS  

10th /a bS S  bS  /c bS S  
11th /c aS S  2S  cS  
12th cT  bT  aS  
13th 21c  /a cT T  9c  
14th aS  T  aT  
15th /a cT T  aT  T  

Table 1: Major feature values for PCA components. 
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A 2-class soft-margin SVM was applied to 15 feature 
values for classification between 5 mL and 10 mL, 10 
mL and 15 mL, 5 mL and 15 mL. Leave-one-out cross 
validation was used for the evaluation. We tested the 
linear kernel, radial basis function (RBF) kernel, and 
polynomial kernel and the RBF kernel obtained the 
highest precision. 

 ( ), ) exp( i j i jxK x xxγ= − −   (7) 

Estimation experiments of unknown amount of 
swallowed water were executed as the evaluation of 
classifier. We used 30 swallowing sounds which 
contains 10 sounds each with 5mL, 10mL and 15mL. 
Table 2 shows the precision of classification results 
with the best parameters for each subject. Parameter C  
denotes a control parameter of soft-margin. 

 
Subject C  γ  Precision 

Subject 1 100 0.001 60.0% 
Subject 2 100 0.01 66.7% 
Subject 3 100 0.01 96.7% 

Table 2: Classification results. 

5 Discussion 

In the measurement of swallowing sounds, the precise 
measured position was not considered. However, the 
respective swallowing sound signals did not vary 
greatly, so the swallowing sound signals can be 
measured independently of the measured position. In 
addition, swallowing sounds were measured without 
taking speech or external noise into consideration. 
These factors may have affected the results negatively, 
and so the proposed method needs to be improved. 

In 15 components that were obtained from PCA and 
used for SVM, linear prediction coefficients were 
influential, so the model for swallowing sounds may be 
different depending on the volume of swallowed water. 
Further, as the peak values in the three parts of the 
swallowing sounds and the intervals between the 
respective peaks were also influential, the movement of 
the larynx and the pharynx may be different depending 
on the volume of the swallowed water. 

Swallowing sounds made by several subjects were 
measured and analyzed. The results confirmed that the 
precision of classification decreased. Thus, the 
elevation of the larynx, influx of the bolus to the 
pharynx, and the opening of the esophagus orifice may 
be different in different individuals. Therefore, the 
learning of SVM for estimation of the volume of the 
swallowed water should be done only using data of the 
subject of interest. 

 

6 Conclusions 

In this study, we proposed a method to estimate how 
much water is swallowed by analyzing swallowing 
sounds. First, swallowing sounds were measured on the 
skin surface of the thyroid cartilage. Second, four signal 
processing methods were applied to the swallowing 
sounds, and feature values that may reflect how much 
water was swallowed were extracted. Third, the number 
of feature values was reduced by PCA. Finally, the 
swallowing sounds were classified depending on the 
volume of swallowed water by using SVM. The results 
showed that swallowed water can be classified with a 
resolution of 5mL. 
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Abstract 

This paper discusses the importance of having the 
common data format for the long term ECG data 
recordings aiming at establishing the ECG life log 
standard.  A recommended format consists of two parts, 
one for the waveform and another for the annotated 
beat timing data. Modified THEW (Telemetric and 
Holer ECG Warehouse) format has been examined as a 
promising candidate for the standard format. 

Keywords Holter ECG, ECG life log, Computational ECG,
Health Care, ISHINE, MFER, Biosignal Interpretation.

1 Introduction  

In the for-discussion section of the latest issue of 
Methods of Information in Medicine [1], the vision of 
Computational Electrocardiography (CECG) has been 
discussed where continuous ECG data are acquired, 
stored and processed for the timely user feedback to 
realize the advanced health care practice. Emerging 
technologies such as IoT or the cloud information 
systems would be the key to realize this CECG vision. 
However, more important key issue is to develop the 
reliable and efficient methods of ECG data processing 
and interpretation. Although the short term ECG data 
analysis is thoroughly established for the clinical use, 
the long term ECG data analysis has to be extensively 
elaborated for the core functioning of CECG practice 
[2]. In order to facilitate to realize the vision. As is 
described in [1], the common standardized data format 
for the long term ECG recordings will be helpful for the 
research collaboration. This paper focuses on this issue. 

2 Methods  

The recommended data format consists of a set of two 
binary data files for each day. One is for waveform and 
another is for the beat timing data. The data format is an 
extended version of the one utilized for the Telemetric 
and Holter ECG warehouse (THEW) of the Rochester 
University [3]. Two major standardized ECG waveform 
recording format are known. One is ISHNE [4] and 
another is MFER, recently approved as an ISO standard 
[5]. The waveform part of the proposed method 
basically adopts the ISHINE format, consists of the 
header followed by the waveform data. The header 
divided into three blocks, i.e. CRC checksum, the fixed 
and variable size parameter blocks. The CRC data block 
checks the validity of the file. Fixed block includes 
common information of the subjects (subjects’ age, sex, 

sampling frequency etc.). The variable-size block is for 
some additional information for the users. Users can 
define the information to be stored. Any data length is 
allowed. For the efficient waveform data storing, 
waveform amplitude differences are stored. One byte is 
used for the waveform amplitude difference. The first 
bit is used for the overflow flag. If the flag is on, the 
succeeding byte is interpreted as the additional 
amplitude data. Annotated RRI interval segment gives a 
compact yet informative data. It includes the beat to 
beat information in 2 bytes. (16 bits). The first 4-bit 
includes the beat annotation and remaining 12-bit is the 
RR interval. Annotation characterizes each beat by a 
single character (N: Normal, NG: Artifact, V: 
Premature ventricular contraction etc.). The subsequent 
12-bit describes RR interval. For the long RR interval
needs more than 12-bit, the data continuation flag is set
to make the following data segment available for
getting the correct interval data.

3 Results and Concluding Remarks 

Typical data size for the annotated beat timing data 
achieved by the recommended method is 173KB for 24-
hour ECG data if the standard ZIP binary data 
compression is used together, which requires a half of 
the data length compared with THEW data format. The 
format needs 5GB for a typical life-long data recording 
of 80 years This is a feasible size to own personally. 
The waveform data will be kept for necessary time span. 
The CECG vision, once realized, is expected to 
contribute for extending peoples’ healthy life 
expectancy considerably. The common standardized 
long term ECG data format will facilitate the research 
collaborations to realize the goal.  
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Abstract 

Recently, drowsy driving has been caused a 
serious accident. The causes of drowsy driving are 
the insufficient sleep and fatigue of the driver. 
Therefore, it is necessary to detect the drowsy 
state of driver due to preventing the drowsy driving.
In this study, we focused on the physiological 
variation and the head movement during the 
drowsy state of the driver. As the results, we could 
confirm that the significant differences in head 
movement and heart rate between normal and 
drowsy condition. 

Keywords Drowsy driving, Head movement, 

Physiological variation, Biological measurement

1 Introduction 

There are some traffic accidents, for example careless 

driving and drowsy driving. Drowsy driving especially 

causes a serious accident such as the fatal accident. The 

causes of drowsy driving, there are insufficient sleep 

and fatigue of the driver, the time zone of drive, the 

traffic volume and so on. Therefore, we need to develop 

the method to detect the drowsy state of driver to 

prevent the drowsy driving. In this study, we focused on 

the physiological variation that is related to autonomic 

nervous system and the head movement during the 

drowsy state of the driver. We compared the 

physiological quantities during wake state and drowsy 

state. 

2 Methods 

We conducted the driving experiment using a driving 

simulator during wake state (daytime) and drowsy state 

(night). Nine healthy males (22-26 years old) took part 

in this experiment. Fig. 1. shows the experimental 

image. We measured electroencephalogram (EEG), 

heart rate, respiratory rate, energy consumption, and 

head movement of subjects. EEG and heart rate were 

measured by biological signal measurement device. 

Respiratory rate and energy consumption were 

measured by respiratory sensor. Head movement was 

measured by acceleration sensor. We used EEG for the 

index of alert level. Subjects drove the traffic lane in the 

oval course at 100 [km/h] for 60 minutes. If they went 

out of the traffic lane, they must come back 

immediately. We finally decide the effective parameter 

from each physiological quantity to detect the drowsy 

driving. 
Respiratory 

Sensor

Acceleration 
Sensor

Z : Front
and Behind

Y : Right
and Left

X : Top
and Bottom

Fig. 1 Experimental image. 

3 Results & Discussions 

We show the result of head movement in Fig. 2. 

Amount of head movement increased in drowsy state. 

We considered that it was difficult to keep the posture 

by low alert level. Fig. 3. shows the result of each 

physiological quantity. Heart rate and respiratory rate 

decreased in drowsy state. We considered that 

parasympathetic nerve became dominant because of 

keeping low alert. Energy consumption was seen the 

unevenness in drowsy state due to increasing the 

operation of steering wheel. We could confirm that the 

significant differences in head movement and heart rate 

between normal and drowsy condition. 
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Abstract 

The system could quantitatively assess the 
pharmaceutical benefit for involuntary exerciser 
patients is very important in clinical site. This study 
we developed the system to assess the 
pharmaceutical benefit by using image processing 

to focus on the mouth dystonia．The advantage of 

this study is noncontact and noninvasive for the 
patients. 

Keywords Involuntary exercier. Heer-like. Image 

proceeing. 

1 Introduction 

The ratio of elderly people in total population is 

increasing in Japan. Elderly pepople have some disease. 

In addition, patients that move the body with difficulty 

are difficult to go to  hospital by themselves. In order to 

reduce the difficulty for patients, we developed the 

system for the evaluation of pharmaceutical benefit 

from the video images that the patient recorded in their 

home. The study is to evaluate the treatment by paying 

attention to the mouth dyskinesia found in many 

involuntary movement's elderly. Mouth dyskinesia is a 

kind of involuntary movement disorder symptoms to 

move unconsciously mouth. 

2 Evaluation Methods 

In order to carry out the evaluation of the treatment, 

to recognize the movement of the mouth from the video 

obtained by photographing the involuntary movement's 

from the front Determining the mouth of a subject by 

using the Haar-Like features in order to recognize the 

movement of the mouth.  

Haar-Like features：Determining whether the object 

want to be recognized by capturing the multiple contrast 

of the image.Feature quantity H (r1, r2) is the average 

luminance difference between the two regions. It shows 

an example of the Heer-Like Feature in Fig.1 

Fig.1 Example of Haar-Like features 

r1：The average brightness of the black area. 

r2：The average brightness of the white area. 

Evaluation criteria made by learning feature pattern 

of image of the recognized object and image does not 

recognize the object. 

3 Exprerimental Method 

The subjects were older women with involuntary 

exerciser. In image analysis technique for the evaluation 

of the treatment using the Haar-Like feature. We were 

recognition of the mouth in the day 4 and day 8 of the 

video from the treatment. 

3.1 Resurt & Conclusion 

In Fig.2, 0 in a) and b) have failed to recognize the 

mouth, 1 is able to recognize the mouth. a) is the 4 days 

from treatment ,b) is the 8 days from treatment. 

Recognition of the mouth cannot be when closed 

strongly the mouth, move well the mouth, tongue and 

the tongue is twisted. It is considered to be different 

from the state of the usual mouth learned by Haar-Like 

feature. That is, it can be determined that have come up 

with symptoms of involuntary movements when it is 

not able to recognize the mouth. In the future, we well 

evaluation of treatment by results. 

a) 4 days after treatment

b) 8 days after treatment

Figure 2: Recognition result of mouth. 
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Abstract 

This study shows the preliminary study of 
estimating core temperature with external auditory 
meatus temperature sensor while exercising. The 
exercise consists of 30 minutes of cycling, and 
treadmill and 30 minutes of rest between each 
exercise. External auditory meatus (EAM) 
temperature was measured with high precision 
NTC thermistors. The highest Correlation 
coefficient between EAM and core body 
temperature is 0.8325.  
Keywords Core temperature, External auditory meatus 
temperature, exercising 

1   Introduction 

Estimating core temperature is important to people 
who work in an extreme environment such as miners, 
soldiers, firefighters. Every year, many cases of heat 
stroke and heat injuries have been reported. 
Physiological Strain Index (PSI) is a good way to 
determine if the person in the dangerous condition. PSI 
can be calculated with core temperature and heart rate. 
It ranges from 0 to 10 and being to 10 is the dangerous 
situation. [1] Measuring Core body temperature takes 
ingestible temperature sensing pill which is burdensome, 
expensive and susceptible to foods and water. 
Measuring external auditory meatus (EAM) 
temperature to estimate core body temperature could 
lead to a better application to people who needs to 
monitor body temperature.  EAM temperature sensor 
can easily modify into earphones and etc. 

2 Methods 

3 Subjects volunteered to exercise in a gym. All 
subjects wore shorts and t-shirts and food and water 
intake were controlled. High precision NTC thermistors 
(CANTHERM, MF51E, Canada) were inserted into the 
3M foam earplugs The picture of the sensor is shown in 
Figure 1. The exercise protocol is shown Figure 2.  

3 Results 

MAE temperature does follow trends of core body 
temperature while exercising. The mean of the 
correlation coefficient is 0.7354. Figure 3 and Table 1 
shows the results.  

Figure 1: Picture of  Example of EAM temperature sensor 

Time 30min 30min 30min 30min 30min 
Activity Rest Cycling Rest Treadmill Rest 

 Table 1: Excercise Protocol 

Figure 2: Example of  core body temperature of subject 1 
comparison with EAM temperature(Red : Core Body 
Temperature. Green, and Blue : EAM temperature.)  

Subjects Correlation Coefficient 
Subject 1 0.6693 
Subject 2 0.7046 
Subject 3 0.8325 

Mean 0.7354

Table 2: Correlation Coefficient of three subjects 

4 Conclusions 

The results may vary when the type of exercise differ 
from this study and when the number of subjects was 
bigger. However, this study shows a good possibility of 
research that EAM temperature could be an easy way to 
estimate core body temperature to calculate PSI and 
other application such as energy expenditure estimation.  
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Abstract

Nonnegative matrix factorization (NMF) has been
widely applied for signal processing and data
analysis. The evident drawback of NMF is that the
adaptive algorithms of NMF tend to converge to local
optimal points, resulting in the demand of validating
stability for the extracted components by NMF
algorithms. We proposed a straightforward way that
after an adaptive NMF algorithm runs for multiple
times, all the extracted components can be clustered
into the pre-defined number of clusters. And if the
inner similarity of each cluster in terms of correlation
coefficient between any two memberships of the
cluster is closer to 1, the adaptive algorithm yields
stable extracted components. Otherwise, the
decomposition results would not be acceptable for
further analysis. The simulated time-series data
decomposed by different NMF algorithms validated
the proposed idea. The proposed approach would be
very significant for the real-world application, such
as, the power spectrum of brain time-series signals.

Keywords nonnegative matrix factorization,
components, coefficients, clustering, stability

1. Introduction

Nonnegative matrix factorization (NMF) has been
widely applied for signal processing and data analysis [1,
2]. Since it was proposed in the 1990s [3-5], many
adaptive algorithms have been proposed [2, 6].
Theoretically, NMF is unique with additional and special
constraints [2], for example, nonnegativity and sparsity.
Despite of the theoretical uniqueness, the adaptive
algorithms of NMF tend to converge to the local optimal
points in practice.  Usually, given an NMF algorithm and
a pre-defined number of components, fits of multiple runs
with random initialization are examined. If the fits do not
vary much across multiple runs of the algorithm, the
decomposition is considered to be stable [1]. However, the
previous study reported that the fits of two NMF
algorithms were similar, but the extracted components by
the two NMF algorithms could be different [7].

Another matrix decomposition approach, independent
component analysis (ICA) [8], also faces up to the similar

problem. It is that the ICA algorithm often converges to
the local optimization points in practice although ICA
decomposition can be unique in theory [8]. One solution
to validate the stability of extracted components by ICA is
to run an ICA algorithm multiple times and then
clustering all the extracted components [9]. If every found
cluster is dense and different clusters are isolated with
each other, multiple runs of the ICA algorithm yield the
similar sets of ICA components, indicating the ICA
decomposition is stable. Otherwise, the different runs of
ICA decomposition produce different sets of ICA
components.

In this study, we applied the solution for ICA to validate
the stability of the extracted components by NMF, and
compared classical NMF algorithms and their low-rank
approximation derivatives using simulated data.

2. Method

2.1 NMF Algorithms

For a given non-negative data matrix ∈ × and≪ min[ ] . NMF attempts to find non-negative
matrices W ∈ × ∈ × to minimize the
function (W,H) = ‖ − ‖ (1)

where and are called component matrix and
coefficient matrix, The product is called a NMF of ,
although is not necessarily equal to the product .
Clearly the product is an approximate factorization of
rank at most . An appropriate decision on the value of
is critical in practice. In most cases, is usually chosen
such that ≪ [ ， ] in which case can be
thought as a compressed form of the data in .× ≈ × × ， ≥ 0， ≥ 0 (2)

To optimize (1) , a very popular multiplicative update
rules were suggested by Lee and Seung [5]H ← .∗ (3)

W ← .∗ (4)

For convenience the algorithm of (3)-(4) is called
classical NMF methods, NMF_MU.
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Another set of updated formulas has been proposed by
Rasmus Bro [10], which is referred to as columnwise
method, and later extended as hierarchical alternating least
squares （HALS）algorithm[1], where the columns of
and are updated sequentially by usingℎ ← [ ] (5)← [ ℎ ] (6)= V − ∑ ℎ , and ℎ are the jth column of W
and H, respectively. For each iteration, HALS can only
update one column of and . Considering that there are
R columns in total in and , HALS and NMF_MU
essentially have equivalent time complexity and space
complexity. However, in practice, the HALS often
converges faster than MU[11].

When factorizing data with HALS and NMF_MU, we
found that the speed of methods convergence is very slow.
The major bottleneck is caused by the matrix
multiplications with the large matrices . In the process of
updating and , the large original data will be
iterated for many times. This process not only converges
slowly, but also greatly consumes computer memory. If
these large matrices can be replaced by much smaller ones,
the efficiency of NMF_MU and HALS can be improved.
Motivated by this, low-rank approximation (LRA) based
NMF has been proposed [11]:min

， ， , ， ， ,= − + − (7)

where, W ∈ × , H ∈ × , ∈ × , ∈ × ,= ≪ , and is a small positive constant.in order
to solve (7). Firstly, we need to find the LRAmin
， ， , − , where and are with the

low rank , ≪ ; Then, optimize −
with fixed and .

The prototypical low-rank NMF algorithms
originated with Guoxu Zhou and Andrzej Cichocki [11]
is provided below with the mean squared error
objective function:H ← .∗ ( )( ) (8)W ← .∗ ( )( ) (9)

This is the so-called lraNMF_MU that implements low-
rank approximation based multiplicative update
(NMF_MU). The first step can be solved efficiently by
using principle component analysis (PCA) or truncated
singular value decomposition (tSVD) or any other suitable
and efficient low-rank approximation algorithms. Now
suppose that the optimal and in the first step, i.e.,V ≈ . Then optimizing the min −
will get above function. At first sight, there is no great
difference between (3) and (7). But note that the

dimensionality of is much smaller than .
Under the present circumstances, = ≪ ,
lraNMF_MU has much lower time and space complexity.

Similar to the HALS algorithm, let = −∑ ℎ and the formulas in (5)-(6) becomesℎ ← [ − ( )] (10)← [ ℎ − ( ℎ ] (11)

where ∈ ×（ ） and ∈ ×( ) are the
submatrices of and by removing their th column.
The low-rank approximation based HALS is called
lraNMF_HALS.

2.2 Hierarchical Clustering

Hierarchical clustering is one of most popular clustering
methods. In contrast to partitional clustering, which
directly decompose the dataset into a set of disjoint
clusters, the hierarchical clustering method is the process
for transforming a proximity matrix into a nested
partition, which can be graphically represented by a tree
called dendrogram. To obtain the number of clusters and
the corresponding partitions, we have to cut the
dendrogram at a certain level. Cutting it at different levels
will lead to different clustering results with different
levels[12]. Hierarchical clustering was applied to  validate
the stability of ICA components [9] here.

Hierarchical clustering algorithms are mainly classified
into agglomerative methods (bottom-up methods) and
divisive methods (top-down methods). In this study, we
select agglomerative methods, where the dendrogram is
formed by bottom-up.

Agglomerative methods are as follows:
Step 1) Start with N clustering; basically, each object is

a cluster; calculate the proximity matrix for N clusters;
Step 2) Find minimum distance in the proximity matrix

and merge the two clusters with the minimal distance;
Step 3) Update the proximity matrix using the new

distances between the new cluster and other clusters;
Step 4) Repeat Steps 2 and 3 until all objects are in one

cluster.
A conservative cluster quality index Iq in the previous

study [9] was defined to reveal the compactness and
isolation of a cluster. It is computed as the difference
between the average intra-cluster similarities and average
extra-cluster similarities:

Figure 1: Waveforms of 10 time-series for in model
(1). They are adapted from NMFLAB [1] and called as

sources here.
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( )=| | ∑ − | || | ∑ ∑ ∈∈, ∈
(12)

where = − . The range of is from 0 to 1. The
closer to 1, the higher stability it is.

2.3 Simulation

Given a signal ∈ × as component matrices
shown in Fig. 1, then we generated matrices ∈ × .
Then we constructed ∗ = ∈ × and =∗ + , where denoted the independent noise and
denoted 64-channel time-series data. We mainly
compared the four NMF algorithms’ performance
(NMF_MU, HALS, lraNMF_MU, lraNMF_HALS) in
presence of large noise measured by different signal-to-
noise ratio (SNR in decibels).

We used the four NMF algorithms to decompose the
data ∈ × . In this experiment, 10 components and
10 coefficients are extracted. In order to compare the
stability and reliability of decomposed components and
coefficients by NMF, we use two steps to solve it:

Step 1): An NMF algorithm runs 50 times. Each time
the initialization was random.

Step 2): All extracted components were clustered,
respectively, according to their mutual similarities, using
agglomerative clustering with average-linkage criterion.

Step 3): The centroid of each cluster was selected as the
component extracted by NMF.

3. Results

3.1 Simulated Data with SNR = 20db

For demonstration, when SNR is 20dB, the 10 estimated
sources and the clustering results of all 500 components
by HALS and MU algorithms are shown in Fig. 2. Ideally,
the number of components in each cluster equals to the
number of times that NMF is run. Obviously, HALS
outperformed MU from the view of the stability of
extracted components. In Fig. 2, the denser the cluster is,
the better the stability of the components extracted by an
NMF algorithm is.

NMF can be regarded as the blind source separation
methods. Then, it is necessary to check the estimated
source in contrast to the real source. Fig. 3 shows the
waveforms of 10 extracted components by two NMF
algorithms. By visual inspection, we can come to the
conclusion that HALS outperformed MU for estimating
the sources.

3.2 Simulated Data with Multiple SNR

In Fig. 2, the SNR is 20dB, which is very high. Fig. 4
demonstrates the results with SNR ranging from -10dB to
20 dB, where four NMF algorithms are applied.

Fig. 4-a shows that fits of four different NMF
algorithms were very similar with each other. Fig. 4-b
reveals the mean over 10 correlation coefficients of 10
pairs between the source and the estimated source by
algorithm for one SNR. The four algorithms yielded
different correlation coefficients, which was variable from
the fits of the four algorithms. Fig. 4-c presents the mean
over 10 Iqs of 10 components extracted by algorithm for
one SNT. The stability of four NMF algorithms were very
different.

Evidently, bigger correlation coefficient indicating
better estimation of sources in Fig. 4-b and the higher Iq
implying better stability of extracted components in Fig.

4-c well correspond to each other. This is reasonable since

(a) HALS (b) MU

Figure 2: Clustering 500 extracted components from 50 runs
of NMF with 10 components in each run:  (a) Inner

similarity of each cluster for HALS, (b) Inner similarity of
each cluster for MU.

(a) HALS

(b) MU

Figure3: The 10 extracted components by two NMF
algorithms.
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if the sources are well extracted by NMF algorithm the
stability of the sources can be high as well.

4. Conclusions

We proposed an efficient approach in order to validate
the stability of extracted components by NMF with
clustering the extracted components yielded via multiple
runs of one NMF algorithm. In terms of the simulated
data, we have found that the higher stability of extracted
component by NMF indicates better estimation of the
corresponding source. There are variable NMF algorithms
in practice and the proposed approach can be applied to
choose the appropriate algorithm of NMF to decompose
the given dataset. This would be very significant for the
real-world application, such as, the power spectrum of
brain time-series signals. Moreover, the proposed
approach is promising for the multi-way data analysis as
well [13]. Due to the limitation of the space, more results
will be reported in the future.
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Abstract 

Ion channels are important targets for drug 
development. Although a number of methods are 
developed for studying ion channels, special 
equipment for cell culture and microfabrication are 
needed. Thus, a simple method which does not 
need any special equipment is helpful for drug 
discovery and fundamental study. Here, we aimed 
to develop a simple method for monitoring 
integration process of pore-forming proteins. In our 
method, lipid monolayers are formed between the 
lipid and buffer solution, and between lipid solution 
and an agar-coated Ag/AgCl electrode. Lipid 
bilayer is formed by contacting two lipid 
monolayers. For evaluating pore formation, 
electrical impedance across the bilayer was 
measured. Impedance between the agar-coated 
electrode in the lipid solution and the electrode in 

the buffer solution was > 107 Ω after forming the 

bilayer. The impedance gradually decreased under 
the condition with supplementing alpha-hemolysin. 
These results suggest that our method is suitable 
to monitor pore-forming process of membrane 
protein. 

Keywords Lipid bilayer, Impedance measurement, 

Alpha-hemolysin

1 Introduction 

Ion channels are important therapeutic targets for 

drug development. A number of study recruited cell 

lines stably expressing ion channels. For example, Ca2+-

activated K+ channels was examined with the HEK293 

cells [1]. Recent progress in microfabrication 

technology enabled to evaluate functions of ion 

channels which were formed in artificial lipid bilayer 

[2]. Although these methods are strong tools, special 

equipment for cell culture and microfabrication are 

needed. Thus, a simple method which does not need 

any special equipment helps drug discovery and 

fundamental study of ion channel function. In this study, 

we aimed to develop such a method for monitoring 

integration process of pore-forming proteins. For 

evaluating the changes in membrane properties, 

electrical impedance across the membrane was 

measured. 

2 Materials and Methods 

2.1 Bilayer formation 

A schematic illustration of the agar-electrode method 

is shown in Figure 1. In our method, lipid monolayers 

are formed between the lipid and buffer solution and 

between lipid solution and an Ag/AgCl electrode. Lipid 

bilayer is formed by contacting two lipid monolayers 

(red circle in Figure 1). Electrical properties of the 

bilayer can be measured with two Ag/AgCl electrodes. 

A buffer solution containing 1.0 M KCl and 10 mM 

HEPES (Dojindo) was prepared. Diphytanoyl glycerol 

phosphor-choline (DPhPC, Avanti) was diluted in n-

hexadecane (Wako) at 10 mg/ml. For a measurement 

electrode, Ag wires were coated with Ag/AgCl paste, 

and one of the electrode was covered with agar (Wako). 

The lipid bilayer was formed as follows. First, the 

buffer solution was poured in a petri dish, and DPhPC 

solution was layered on the buffer. Second, an Ag/AgCl 

electrode with and without agar-coating was set in the 

DPhPC and buffer solution, respectively. Lipid 

monolayers were expected to be formed at the 

boundaries between lipid solution and buffer and 

between lipid solution and agar. Finally, the agar-coated 

electrode was manipulated to contact the boundary 

between the lipid and buffer solution. Alpha- hemolysin 

(aHL; Sigma), a pore-forming membrane protein, was 

added to the buffer solution at 20 g/ml for evaluating 

the change in impedance. All procedures were 

performed at room temperature. 

Figure 1: Shcematic illustlation of agar-electrode 

method. 
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2.2 Impedance measurement 

Impedance of the lipid bilayer at 1 kHz was measured 

with LCR HiTester (3522-50; Hioki) after forming 

bilayer with and without aHL. Data were collected 

every 10 s for more over 15 min. Impedance 

measurement was performed with a stored program, and 

the parameters are shown in Table 1. The impedance 

was normalized by the averaged value within the first 1 

min. 

3 Results and Discussion 

Figure 2 shows the experimental setup. Lipid solution 

was layered on the buffer solution, and an agar-coated 

Ag/AgCl electrode touched the boundary. Impedance 

between the agar-coated electrode in the lipid solution 

and electrode in the buffer solution was > 107 Ω after 

contacting the agar with boundary between lipid and 

buffer solution. When both two agar-coated electrodes 

were set in the buffer solution, impedance between two 

electrodes was approximately 102 Ω. The impedance 

was consistent with that of previous study [3], 

suggesting that a lipid bilayer was formed. 

Impedance was monitored for 1 hour after forming the 

bilayer with aHL. Figure 3 shows changes in impedance. 

Black dots show the impedance under the condition 

with aHL, and the red shows control. Under the 

presence of aHL, the normalized impedance gradually 

decreased to < 0.02. Meanwhile, the impedance did not 

show such decrease without aHL, suggesting that aHL 

integrated into the lipid bilayer and formed pores. 

Additionally, the possible reason for the decrease in 

impedance is protein pore formed by aHL. 

Table 1: Setting of measurement 

Parameter Value 

Test frequency 1 kHz 

Test voltage 25 mV 

Limit for current Off 

Test range Auto 

Open circuit compensation All 

Short circuit compensation Off 

Trigger delay 0 s 

Averaging 4 times 

Measurement speed Slow2 

 

 
Figure 2: Experimental settings for impedance 

measurement. 

 

 
Figure 3: Changes in electrical impedance with and 

without alpha-meholysin integration. 

4 Conclusion 

We developed a simple method for evaluating the 

integration of membrane protein and pore formation. As 

a result, electrical impedance was gradually decreased 

after forming bilayer under the condition with aHL. 

Meanwhile, the impedance did not show such decrease 

without aHL, suggesting that aHL integrated in the lipid 

bilayer and formed pores. These results suggest that our 

simple method is suitable to monitor pore-forming 

process of membrane protein. 
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Abstract

During the last several decades, the availability of
ozone autohemotherapy is gradually being
understood through the comprehensive study and
clinical experiment. Ozone autohemotherapy is
advocated as a form of alternative or combination
with orthodox medicine in treating vascular and
neurological diseases. In order to study the
therapeutic effect of ozone autohemotherapy on
multiple sclerosis (MS), we used a near-infrared
spectroscopy system to monitor the
oxygenhemoglobin (O2Hb) and
dexoygenhemoglobin (CO2Hb) concentration
changes of 6 MS suffer subjects under ozone
autohemothearpy for about 150 minutes each.The
NIRS-Ozone signals were performed a time-
frequency analysis in three time intervals:1)blood
removal; 2)blood reinfusion and 3) at the end of the
monitoring (a few minutes before the end of the
monitoring). By computing and comparing the
relative power of O2Hb and CO2Hb signals in the
very low frequency (VLF) and low frequency (LF)
bands during three different recording periods, it can
be observed that the VLF power decreases and the
LF power increases, which is possible an indication
of a clear vascular effect of ozone. From a technical
point of view, it is a quantitative assessment of the
therapeutic effect of ozone autohemotherapy by
means of time-frequency analysis.
Keywords: Ozone autohemotherapy, near-infrared
spectroscopy, time-frequency analysis

1 Introduction

Ozone is always considered as a harmful gas present in
the photochemical smog. Continuous ozone inhalation

eventually causes leisions in the respiratory system and
extrapulmonary organ because of the releasing of some
inflammatory substances [1-2]. However, its toxicity is
related to its dosage. In medicine, many studies and
clinical application demonstrated that an appropriate
ozone dosage with a precise concentration can be used as
a treatment [1-2]. Ozone autohemotherapy (OA) achieves
the therapeutic result by the reinfusion of the ozonated
blood to the patient. When a medical controllable ozone
dose reacts with biomolecules present in plasma, there is
a biochemistry process that can trigger a precisely
calculated minimal oxidative stress which is able to
upregulate the antioxidant defenses [1-2]. Thus, the
medical ozone therapy has a different result from the
oxidative stress induced by continuous inhalation. OA
can improve blood circulation, activate antioxidant
enzymes and scavenge free radicals [3]. Thanks to the
development of dose-adjustable ozone generator, OA as a
treatment has been applied in an extensive range of
pathologies. Recent studies showed that OA has been
already used to treat vascular disease, advanced ischemic
diseases and neurological disease [4-8].

This paper introduced the research on the therapeutic
effect of OA in multiple sclerosis (MS). NIRS was
applied to monitor the changes of cerebral oxygenation
level affected by OA on MS patients. The NIRS signals
were processed in the time-frequency domain with the
method of Choi-Williams Distribution (C-W
Distribution). This study is an in-vivo case of
investigating the long-term effect of OA in neurological
disease.

2 Methods

1.Subjects and Experiment protocol
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We enrolled 6 MS patients. All the subjects were
instructed about the system and the experimental protocol
and signed a written informed consent.

The experiment protocol consisted of three steps: 1)
the subjects were drawn 240 grams of blood from the
antecubital vein; 2) the blood was mixed with 180ml of a
O2/O3 gas mixture, which was composed by O2 at 50%,
with an O3 concentration equal to 40μg/ml (M95,
Multioxygen, Gorle, Italy); 3) the blood was slowly
reinfused into the subject via the antecubital vein, after
being passed through a sterile filter[5]. The ozone therapy
experiment were taken under a precise medical
observation to see whether they were in comfort and
relaxation situation or not during the long-term recording.

2.NIRS recording and NIRS signal processing

Near-infrared spectroscopy (NIRS) is a spectroscopic
method to non-invasively monitor the cerebral
oxygenation level by detecting changes in hemoglobin
concentration associated with neuron activity. The
chromophores, oxyhemoglobin (O2Hb) and
deoxyhemoglobin (CO2Hb), are considered as the main
tissue oxygenation parameters [9]. The specific periods of
the NIRS monitoring during the OA treatment were
applied to assess its therapeutic effect.

The NIRS signals were recorded using a commercially
oximeter (NIRO300, Hamamatsu Photonics K.K., Japan)
with the sampling rate of 2Hz. Four different wavelength
(775, 810, 830 and 910nm) of near- infrared source and a
photo-detector were applied to monitor the concentration
changes of chromphores. The detecting area is on the
forehead 2 cm away from midline and 1cm above the
supraorbital ridge [5]. The whole monitoring lasted for
about 150 minutes. It was divided into the following
stages: 1) baseline condition; 2) blood removal; 3) blood
reinfusion; 4) post reinfusion. The NIRS monitoring
recorded the concentration changes of O2Hb and CO2Hb
in the entire process, which reflect the cerebral vasomotor
reactivities of the subjects. In this study we limited the
observation to 150 minutes, due to the subjects’
physiological situation (for example, feeling tired or
hungry) and the physiological constraints of the NIRS
system.

The nonstationary NIRS-ozone signals were processed
by a time-frequency analysis through Choi-Williams
Distribution (with σ=0.5) in three time intervals:1) blood
removal; 2) blood reinfusion and 3) at the end of the
monitoring (a few minutes before the end of the
monitoring).

Many studies present the oscillations of cerebral
hemodynamics and metabolism in adult human head can
be detected by using NIRS, which also provide the
possibility of frequency-derived parameters used to
assess cerebral autoregulation [10]. These oscillation
have been classified within the power spectrum

essentially consisting of two different bands: in very low
frequency (VLF) (20-40 mHz) and low frequency (LF)
band (40-140 mHz), VLFs are thought to be generated by
brain stem nuclei, which modulated the lumen of the
small intracerebral vessels. LFs reflect the systemic
oscillations of the blood pressure and are modulated by
the sympathetic system activity[11].

We also computed the time-frequency Squared
Coherence Function (SCF) between the O2Hb and the
CO2Hb concentration signals. Being x(t) the O2Hb
concentration signal and y(t) the CO2Hb, the SCF
between the two signals was defined as

 
   ftDftD

ftD
SCF

yyxx

xy
xy ,,

,
2




Where, Dxy(t,f) is the cross time-frequency C-W
representation of the O2Hb and the CO2Hb concentration
signals, Dxx(t,f) is the time-frequency C-W representation
of the O2Hb signal, and Dyy(t,f) that of the CO2Hb signal.

All the auto and cross time-frequency distributions
were computed on a suitable time window according to
the length of event, with the event centered in the middle
part of the window. This value of time window is chosen
to keep the experimental protocol sufficiently short.

3 Results

From Figure 1 to Figure 3 respectively, shows the
O2Hb (left) and CO2Hb(right) concentration changes of
one MS subject during the three specific periods.

Figure 1: C-W distribution of O2Hb (left) and CO2Hb
(right) concentration signals during blood removal. The
upper panel shows the time course of the O2Hb and
CO2Hb concentration changes, the lower the C-W
distribution (σ=0.5). The vertical green lines mark the
onset and offset of blood removal.
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Figure 2. C-W distribution of O2Hb (left) and CO2Hb
(right) concentration signals during blood reinfusion. The
upper panel shows the time course of the O2Hb and
CO2Hb concentration changes, the lower the C-W
distribution (σ=0.5). The vertical green lines mark the
onset and offset of blood reinfusion.

Figure 3. C-W distribution of O2Hb (left) and CO2Hb
(right) concentration signals during at the end of the
monitoring. The upper panel shows the time course of the
O2Hb and CO2Hb concentration changes, the lower the
C-W distribution (σ=0.5).

The results in Figure 1-3 were shown both in time
domain (upper) and time-frequency domain(lower).The
axes of the upper figures are: horizontal axis is time(s)
and the vertical axis is chromphore concentrations
(μmol/L). The axes of the lower figures are: horizontal
axis is time(s) and the vertical axis is frequency (Hz).
Figure 1 showed that power in the LF band, denoting a
vagal response due to blood flow perturbation, which is
more evident on O2Hb than on CO2Hb. Figure 2 showed
that there was an increased LF power of CO2Hb due to
cerebral autoregulatioin because the increased oxygen
triggered vasoconstriction. Figure 3 showed that there is
no power in the VLF band. Oscillations are all in the LF
band because it is a long period vascular response.

For each subject, we computed the following variables
derived from the Choi-Williams Distribution:

1) The O2Hb and CO2Hb power in the VLF and LF bands
(PVLF and PLF), during blood removal, blood reinfusion
and at the end of the monitoring, for a total of 12
variables.
2) The total power of O2Hb and CO2Hb (PTOT), during the
same three time intervals, for a total of 6 variables.
3) The O2Hb and CO2Hb SCF value in the two bands
(SCFVLF and SCFLF) and total (SCFTOT), during the same
three time intervals, for a total of 9 variables.
Thus, we organized the data in a matrix containing the 6
subjects as row and 27 measured variables as columns,
the total number of variables was 162.

The signal power in the VLF band, LF band and total
frequency band were computed by integration of the
corresponding time-frequency representation. Since there
are three analytical stages, the VLF band and LF band
power values were converted into percentage by
comparing to the total signal power, see table 1-3.

Table 1. analysis results of power changes of O2Hb and
CO2Hb during the period of blood removal

Variabl
es

PVLF_O2H
b(%)

PLF_O2H
b(%)

PVLF_CO2

Hb(%)
PLF_CO2

Hb(%)
Subject1 25.295277

84
69.09768
801

11.5624517 82.288472
26

Subject2 18.826489
98

70.45358
962

28.2056840
3

67.011284
25

Subject3 18.030801
33

68.17864
408

17.5935050
9

73.147110
04

Subject4 18.714697
84

76.28820
607

17.9124842
9

77.819181
29

Subject5 0.6070019
94

65.68945
505

0.91627082
1

73.643174
35

Subject6 12.860794
12

75.04595
931

14.8435975
6

77.665611
36

Mean
SD

15.723
8.393

70.792
4.103

15.172
8.940

75.262
5.232

Table 2. analysis results of power changes of O2Hb and
CO2Hb during the period of blood reinfusion.

Variabl
es

PVLF_O2

Hb(%)
PLF_O2

Hb(%)
PVLF_CO2

Hb(%)
PLF_CO2

Hb(%)
Subject
1

30.68867
551

61.5442
055

11.619986
47

81.00513
545

Subject
2

16.64811
763

71.5207
9894

17.843588
81

75.33780
148

Subject
3

27.44047
107

63.4708
6868

24.581522
07

65.72830
057

Subject
4

16.87925
651

73.9245
3294

13.479637
92

83.00265
57

Subject
5

11.73696
386

80.6183
4618

15.845336
42

78.30320
422

Subject
6

9.260498
848

81.8244
6692

22.743944
93

70.90363
871

Mean
SD

18.776
8.546

72.151
8.446

17.686
5.119

75.713
6.493
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Variabl
es

PVLF_O2

Hb(%)
PLF_O2

Hb(%)
PVLF_CO2

Hb(%)
PLF_CO2

Hb(%)
Subject
1

7.355220
366

85.45522
974

11.028008
94

84.10531
039

Subject
2

15.10873
463

77.38068
006

13.690456
67

78.94990
268

Subject
3

10.62330
97

70.80230
521

15.303620
44

78.93009
618

Subject
4

22.58885
968

70.63325
517

26.869324
01

65.87562
301

Subject
5

0.220733
154

76.01119
815

0.2233734
46

79.46801
936

Subject
6

10.08532
773

79.88689
619

16.442536
97

77.04052
917

Mean
SD

10.997
7.505

76.695
5.645

13.926
8.625

77.395
6.114

Table 3. analysis results of power changes of O2Hb and
CO2Hb at the end of the recording

According to Table 1-3, it can be observed that the
power of O2Hb and CO2Hb in the VLF band were
progressively reduced during the monitoring. Conversely,
the LF power neatly increased for O2Hb (from 72.151%
to 76.695%) and weakly for CO2Hb (from 75.713% to
77.395%).

The combination of VLF power decrease and LF
power increase indicated a clear vascular effect of ozone.
In fact, The LF component originates from fluctuations in
sympathetic vasomotor control by the central nervous
system [12]. This means that we observed a vasomotor
activity following OA that lasted about 150 minutes. This
numerical result is in accordance to the patients’
judgment. Many patients reported that the subjective
sensation of overall physical improvement and wellness
given by ozone lasted for days after treatment.

4 Conclusions

In conclusion, we applied the Choi-Williams
distribution to the NIRS signals to assess the cerebral
oxygenation of patients with multiple sclerosis under the
ozone autohemotherapy. By computing and comparing
the relative power of O2Hb and CO2Hb signals in the
VLF and LF bands during three different recording
periods, it is obvious that the VLF power decreases and
the LF power increases. This indicated the endothelial
reactivity and showed to be a good result. The time-
frequency analysis is an useful tool for characteristics
analysis of ozone signals.
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Human Response Delay as a Random Variable:
Experiments on Balancing Overdamped Virtual Pendulum

Takashi Suzuki, Ihor Lubashevsky, Shigeru Kanemoto
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Abstract

We present the results of our experiments on
studying the probabilistic properties of human re-
sponse delay in balancing virtual pendulum with
over-damped dynamics. The overdamping elimi-
nates the effects of inertia and, thereby, reduces the
dimensionality of the system under control. The cre-
ated simulator makes the pendulum (stick) invisible
when the angle between it and the upward position
is less than 5o. It enables us to measure directly
the delay time as the time lag between the moment
when the pendulum becomes visible and the mo-
ment when a subject starts to move the mouse. It is
demonstrated that the response delay time is char-
acterized by a wide distribution sensitive to the par-
ticular details of stick balancing process and its pos-
sible correlations in the sequence of actions are ig-
norable. It poses a question about the applicability
of standard formalism of delayed differential equa-
tions to describing human intermittent control.

Keywords Human response delay, Human intermit-
tent control, Pendulum balancing, Random variables

1 Introduction

In the framework of human intermittent control with
noise-driven action, the transition from passive to active
phases is considered to be probabilistic [1]. It reflects hu-
man perception uncertainty and fuzzy evaluation of the
current system state before making decision concerning
the necessity of correcting the system dynamics. Broadly
speaking, during the passive phase the operator accumu-
lates the information about the system state; naturally,
this process is not instantaneous but requires some time
in addition to the physiological delay in human response.
The cumulative effect of the two mechanisms, the accu-
mulation of information about the system state and the
physiological delay, can be described by some effective
delay time τ . The found stochasticity of human intermit-
tent control in experiments on balancing virtual stick [1]
prompts us to expect that this delay time is not a fixed
value but a random variable with a relatively wide dis-
tribution. To elucidate the probabilistic properties of this
cumulative delay in human reaction in controlling unsta-
ble mechanical system we have conducted some experi-
ments whose results are reported in the present work.

Figure 1: One-
degree-of-freedom
overdamped inverted
stick.

Investigations of response delay in human reactions to
various stimuli including visual ones has a relative long
history (see, e.g., [2]). Usually in experiments on human
visual perception the values of delay time τ & 100 ms
are detected and they are unimodally distributed within a
wide interval; the gamma or Weibull fits are often used to
characterize the found results (see, e.g., [3]). During the
last decade there has been accumulated some evidence
that mental processes contribute substantially to the re-
sponse delay and such factors as memory load and re-
quired attention are essential in this case (e.g., [4, 5]).
Taking into account these facts and the possible existence
of two mental systems of information processing (see,
e.g., reviews [6, 7]) we may expect the response delay
time distribution to exhibit complex behavior especially
in cases when it is related to decision-making in multi-
factorial processes like human intermittent control.

2 Methods

As previously [1], the paradigm of balancing an over-
damped inverted pendulum was employed. It was imple-
mented via balancing a virtual stick whose dynamics is
affected by computer mouse movement (Fig. 1). Namely,
the stick dynamics is simulated by numerically solving
the ordinary differential equation

τθ
dθ

dt
= sin θ − τ

l
ϑ cos θ , (1)

where θ is the angular deviation of the stick from the ver-
tical position and ϑ is the cart velocity. The parameter τθ
determines the timescale of the stick motion: the higher
the value of τθ, the faster the stick falls in the absence of
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Figure 2: Time pattern of mouse velocity used in measur-
ing the reaction delay time. The origin in this plot is place
at the moment when the stick becomes visible for the first
time in each balancing trial. The “Random” setup.

human control. The sticks length l determines the char-
acteristic magnitude of the cart displacements required
for keeping the stick upright. The cart position was con-
trolled by the operator via a computer mouse. A new fea-
ture of this balancing simulator is that the stick becomes
invisible within the sector −5o < θ < 5o (Fig. 1).

The experiments were implemented as a sequence of
stick balancing trials. Within one trial the stick is initially
placed by the computer inside the sector of invisibility
and its further motion is controlled by a subject during
the next 5 s or is terminated earlier if the stick has fallen.
After the following 3 s designated for subject’s rest the
system position is restored, the cart is put in the middle of
the screen and the stick is automatically returned into the
sector of invisibility. Then, the subject again continues
the balancing process for the next trial. The total number
of trials was about 300 for each subject. Two versions of
these experiments were conducted. Within the first one,
to be referred to as the “Random” set-up, at the beginning
of each trial the stick is placed at an arbitrary chosen po-
sition inside the sector of invisibility, whereas within the
second “One-side” set-up its initial position can be cho-
sen only from one side of the upward position (Fig. 1).
Within the “Random” set-up subjects cannot predict the
side on which the stick will appear, whereas for the “One-
side” set-up it is determined.

Within one trial the delay time in the human response is
measured as the time lag between the moment when the
stick becomes visible for the first time and the moment
when a subject starts to move the mouse, i.e., when the
mouse speed exceeds some threshold introduced to cut-
off noise effects. The characteristic time velocity pattern
of the mouse motion found in the conducted experiments
is shown in Fig. 2.

Eight right-handed healthy male students participated
in the experiments. None of them had prior experience in
either virtual or real stick balancing. The set of 5-minute
exercise sessions enabled them to get familiar with the
simulator manipulations before the main experiments.

3 Results and Discussion

Figure 3 demonstrates the characteristic histograms
and patterns of the reaction delay time in a sequence of
balancing actions; Figure 4 exhibits the corresponding
correlation functions of the reaction delay time. In Fig. 3
the data collected within the “One-side”/“Random” set-
up are shown in red/blue.

Based on the obtained results we can draw the follow-
ing conclusions.

(i) The human response delay time recorded in these
experiments is practically a random variable distributed
inside a wide interval. The lower boundary τl of this in-
terval can be less than 50 ms (within the obtained accu-
racy); its upper boundary τu is about 500–600 ms. This
estimate of τl is rather close to the limit response time de-
termined by human physiology (for a resent review see,
e.g. [8] and the following discussion), whereas the found
value of τu is typical for human response delay during
complex balancing tasks (see, e.g., [9]).

(ii) For different subjects the histograms can exhibit a
strong as well as weak dependence on the predictability
of the stick motion. Namely, the side on which the stick
appears for the first time after the initial system position
having been restored. Two subjects, whose actions are
illustrated by the diagram shown in the lower right cor-
ner in Fig. 3, demonstrated a strong dependence on this
factor. Their histograms in the case of the “One-side”
set-up are remarkably wider than in the case of the “Ran-
dom” set-up due to the considerable contribution of the
region of small values less than 200–300 ms. This re-
gion of rather short response delay may be related to the
automatic mechanism of human reaction [9].

(iii) The patterns (Fig. 3) and the corresponding cor-
relation functions (Fig. 4) demonstrate the weak correla-
tions (up to their absence) in the response delay time in
a stream of subject actions in pendulum balancing. The
found correlations for some subjects admits the interpre-
tation, e.g., as certain variations in subject’s attention dur-
ing the balancing task.

During the last decades there have being ongoing de-
bates about the existence of two types of cognitive pro-
cesses that are fast, automatic, and unconscious and those
that are slow, deliberative, and conscious. Moreover they
may be assumed to occur from two architecturally (and
evolutionarily) distinct cognitive systems. Correspond-
ingly one of these systems must be reflexive, automatic,
fast, affective, associative, and primitive, and the second
one should be deliberative, controlled, slow, cognitive,
propositional, and more uniquely human. Besides, there
are accounts assuming the dual-processes to arise parallel
and compete with each other, however, there are also ar-
guments against the dual system of decision-making; for
a review and discussion of the evidence supporting both
sides of the debate a reader may be referred to Refs. [6, 7].
The found dependence of the constructed histograms on
subject’s individuality argue for the fact that the two cog-
nitive systems are comparable in influence on response
delay in human intermittent control. Therefore the re-
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Figure 3: The characteristic histograms and action sequence patterns of response delay time obtained based on the con-
ducted experiments. Blue lines represent the results of the “Random” set-up, red lines match the “One-side” set-up.
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Figure 4: The characteristic correlation functions of the response delay in a sequence of actions in pendulum balancing.

sponse delay must be actually a certain rather complex
function of the human state affected by the current situa-
tion. It is in a qualitative agreement with the statement
that in complex balancing tasks human response may
indicate flexible, variable delay and intentional mecha-
nisms associated with central processing [9].

In summary, the demonstrated complex properties of
human response delay argue that the delay time, at least in
human intermittent control, has to be treated as a random
variable which is simultaneously characterized by

- a distribution in a wide region,

- the absence of correlations in sequence of actions,

- a dependence on the particular properties of system
dynamics and balancing process.

The noted features together allow us to pose a question
about the applicability of the standard formalism of de-
layed differential equations to describing human intermit-
tent control.
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Mesolevel Intermittency of Human Control:
Car-Driving Simulator Experiments

Ryoji Yamauchi, Ihor Lubashevsky, Hiromasa Ando

University of Aizu, Japan

Abstract

Based on the open source engine “TORCS” a
rather simple car-driving simulator was created and
used to analyze the basic features of human be-
havior in car-driving within the car-following setup.
Eight subjects with different skill in driving real cars
participated in these experiments. They were in-
structed to drive a virtual car without overtaking and
losing sight of the lead car driven by computer at a
fixed speed. In a series of experiments, the lead car
speed was set equal to 60, 80, 100, and 120 km/h.
In the present work based on the collected data we
single out three characteristic styles of car-driving.
Namely, we analyze the statistical properties and
time patterns of the car pedal position—the pedal
cposition directly reflects subject actions. The dis-
criminated typical styles of driving can be classified
as “pulsating,” “stationary,” and the mixture of the
previous two. The latter style admits the interpre-
tation as intermittent transitions between the “pul-
sating” and “stationary” styles, we call this feature
mesolevel intermittency of human control.

Keywords Human control, Intermittency, Car-driving
simulator, Styles of driving

1 Introduction

During the last decades, a new concept of human ac-
tions in stabilizing mechanical systems—called the hu-
man intermittent control—was developed (see, e.g., [1]).
It considers human operators not to be capable of control-
ling system dynamics continuously and, as a result, their
actions may be conceived of as a sequence of alternate
phases of active and passive behavior. The switching be-
tween these phases is supposed to be event-driven. The
particular mechanism governing the event-driven transi-
tions between the passive and active phases is a matter
of ongoing debates. Recently, a novel concept of noise-
driven control activation has been developed [2] as a more
advanced alternative to the conventional threshold-driven
activation. In this concept, the transition from passive
to active phases is probabilistic and reflects human per-
ception and fuzzy evaluation of the current system state
before making a decision concerning the necessity of cor-
recting the system dynamics. During the passive phase,
the control is halted and the system moves on its own.

Broadly speaking, during the passive phase the operator
accumulates the information about the system state. The
individual fragments of active phase can be regarded as
open-loop control, which is due to the delay in human
reaction (e.g., [1]).

Driving a car in following a lead car is a characteristic
example of human control. Recently using the data col-
lected in our preliminary experiments we presented some
evidence for that the car-driving should be categorized as
a generalized intermittent control with noise-driven ac-
tivation [3]. In the given work, based on data collected
in new series of experiments described below, we ana-
lyze the characteristic types of driver actions called car-
driving styles. The main attention is focused on a cer-
tain “mixed” style admitting interpretation as new class
of intermittent phenomena—mesolevel intermittency—
whose description is the main goal of the present work.

In the reported experiments, a car-driving simulator
based on the TORCS engine (The Open Racing Car Sim-
ulator) was used; TORCS is a highly portable multi plat-
form car racing simulator [4] widely used in car racing
games as well as academic research. One of the reasons
for choosing a car-driving simulator for studying human
actions in the car-driving is the possibility of separating
the intrinsic human factors from effects of the various
heterogeneities of real road structures; the virtual envi-
ronment is controlled completely.

2 Experiments

Figure 1: The view of car-following

The conducted experiments were confined to the car-
following setup, which is illustrated in Fig. 1. Eight male
students of age around 22 and 24 participated in these
experiments. Their experience of driving real cars is pre-
sented by Table 1. The subjects were instructed to drive
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Table 1: Subjects’ characteristics and their driving expe-
rience.

ID Driving License; issued Driving Frequency
1 Yes; 2 months ago Rarely
2 Yes; 3 years ago Rarely
3 Yes; 1 year ago Sometimes
4 Yes; 3 years ago Often
5 Yes; 4 years ago Rarely
6 Yes; 2 years ago Daily
7 Yes; 4 years ago Rarely
8 Yes; 3 years ago Daily

a virtual car in any convenient way in following the lead
car (driven by a computer at a certain fixed velocity V )
without overtaking and losing sight of it. In the series of
experiments, the lead car speed was set equal to 60 km/h,
80 km/h, 100 km/h, and 120 km/h. All of the involved
subjects participated in these four experimental setups. A
detailed description of the virtual car driven by the sub-
jects, the characteristic of car engine, and the track topol-
ogy can be found in [5].

3 Results

The position of the accelerator and brake pedals di-
rectly reflects driver actions and, so, should be included
in the list of the phase variables describing the car dy-
namics. For this reason in the presented analysis the
main attention is focused on the characteristic properties
of the car pedal position and its time variations showing
the driver actions in the active phase of car motion con-
trol. The collected experimental data have been used to
construct the time patterns and the histograms of pedal
position for the accelerator and brake pedals as well as
the histograms of their time derivatives. Below this his-
tograms will be refereed to as p-distribution and dp/dt-
distribution, respectively.

The characteristic p- and dp/dt-distributions obtained
in the conducted experiments are shown in Figs. 2–4.
Each of these figures depicts also the corresponding time
pattern of the car pedal position, the positive values are
related to the acceleration pedal, the negative values rep-
resent the brake pedal.

We have singled out three different styles of car-
driving using the found characteristic forms of the his-
tograms and the time patterns of pedal position. Let us
discuss these styles individually.

Style 1: Pulsating. This style of driving has been
demonstrated by subject 3 for the lead car speed
V = 80–100–120 km/h. The characteristic fea-
ture of Style 1 is often transitions between keeping
the acceleration pedal pressed near a certain posi-
tion pmax and releasing it. The brake pedal practi-
cally is not used. As a result, the histogram of the
pedal position p has two maxima located at p = 0,
with a clear peak on the histogram, and pmax. The

histogram of the pedal position time derivative has
heavy tails and a sharp peak at the origin.

Style 2: Stationary. This style of driving has been
demonstrated by subject 4 for V = 100–120 km/h,
subject 6 for V = 80 km/h, subject 7 for V = 80–
100–120 km/h, and subject 8 for V = 120 km/h.
Both the histograms actually are symmetric. Within
the given style the time patterns show that the drivers
preferred to keep the acceleration pedal pressed con-
tinuously.

Style 3: Intermittent. This style of driving has been
demonstrated by subject 1 for V = 60–80–
100 km/h, subject 4 for V = 60–80 km/h, subject 5
for V = 80–100–120 km/h, subject 6 for the lead
car speed equal to 60 and 120 km/h, and subject 8
for V = 60–80–100 km/h. Its characteristic feature
is practically a unimodal form of the p-distribution
except for the one-dot-peak at p = 0, this form
looks similar to the Laplace distribution. The dp/dt-
distribution is essentially non-symmetric, its parts
corresponding to the positive and negative values
differ substantially in shape. Based on this data it
is possible to think that the car braking was imple-
mented via a fast release of the acceleration pedal; in
the region of negative values this histogram is char-
acterized by heavy tails. The time pattern looks like
a irregular sequence of alternative fragments, when
the drivers released the pedals highly often and when
they preferred to keep the acceleration pedal pressed
for a long time.

Strictly speaking, two additional styles of driving can be
singled out [6]. One of them was demonstrated by sub-
ject 1 for V = 120 km/h, subject 5 for V = 60 km/h,
and subject 6 for V = 100 km/h. Within this style the p-
distribution is really symmetric with respect to the point
pmax of its maximum and takes the form of the Laplace
distribution. However, the dp/dt-distribution is not sym-
metric remarkably. The other is found in data for subject
4 at V = 100–120 km/h, subject 6 at V = 80 km/h,
subject 7 at V = 80–100–120 km/h, and subject 8 at
V = 120 km/h. Both the corresponding histograms actu-
ally are symmetric. Within the given style the time pat-
terns show that the drivers preferred to the acceleration
pedal pressed continuously. In the present analysis we
regard them as some versions of Style 3.

The shown histograms are ordered according to their
symmetry, so Styles 1 and 2 may be treated as some
limit cases, whereas Style 3 (and its other versions) may
treated as their mixture at the first glance. However, Style
3 possesses individual characteristics not exhibited by
Styles 1 and 2 as demonstrated by the p-distribution and
dp/dt-distributions, which allows us to regard it as indi-
vidual style of car driving.

Summarizing the obtained results, the pedal position
time patterns found for Style 3 enable us to put forward
the concept of mesolevel intermittency of human inter-
mittent control. It describes irregular transitions between
different modes of behavior acceptable in implementing
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Figure 2: Style 1. The time pattern of pedal position and histograms of the pedal position and its time derivative.
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Figure 3: Style 2. The time pattern of pedal position and histograms of the pedal position and its time derivative.
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Figure 4: Style 3. The time pattern of pedal position and histograms of the pedal position and its time derivative.

some task as, for example, the balancing of inverted pen-
dulum or the car-driving. In the conducted experiments
the mesolevel intermittency is instantiated in irregular
transitions between Styles 1 and 2. It should be noted
that this intermittency characterizes irregular transitions
between the basic styles of driving rather than the pas-
sive and active phases of the standard (microlevel) inter-
mittent control. Possible mechanisms responsible for the
switching between the basic styles of driving is the matter
of further research.
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Reinforcement Learning with Status Quo Bias

K. Hijikata, I. Lubashevsky
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Abstract

We put forward a concept of human intermittent
control as a sequence of point-like moments when
a subject makes decision on activating or halting
the control. These decision-making events are as-
sumed to be driven by the information on the state
of system under control the subject accumulate con-
tinuously. As the basic formalism of describing this
type decision making the generalized model of re-
inforcement learning with status quo bias is pro-
posed. Numerical simulation demonstrates that the
proposed model does possess the required proper-
ties of quasi-continuous behavior.

Keywords Intermittent Control, Reinforcement
Learning, Status Quo Bias

1 Introduction: Model Background

Nowadays intermittent control has become a novel
paradigm of human behavior in controlling various un-
stable systems (see, e.g. [1]). It implies discontinuous
control, which repeatedly switches off and on instead of
being always active. As a result, human actions in such
control form a sequence of alternate phases of passive and
active behavior, where the transitions between the phases
are governed by event-driven mechanisms.

The threshold mechanism governing the event-driven
activation of human control is now widely accepted. It
claims that the control is activated when the discrepancy
between the goal and the actual system state exceeds a
certain threshold. Confining our discussion to conscious
actions of humans, we note that the threshold mechanics
tacitly assumes human actions to be rather deterministic
in nature. Recently [2], based on experimental data on
human balancing of virtual overdamped pendulum we put
forward a new concept of noise-driving activation of in-
termittent control which considers human actions highly
irregular. In this case human response to the discrepancy
between the goal and actual state should be treated as a
substantially probabilistic phenomenon.

The individual active phase fragments admit the inter-
pretation as open-loop control (e.g., [1]). It implies that
a subject practically does not respond to changes in the
system state after the current active phase fragment being
initiated and before its termination. In this way we come
to the conclusion that the real active behavior of a sub-
ject in controlling such systems may be conceived of as
a sequence of point-like events when the subject decides

to activate the control and, then, to halt its implementa-
tion. Between these events his behavior is really passive
in spite of the fact that in the active phase the subject exe-
cutes some actions. We hypothesize that these point-like
events can be regarded as the moments when the sub-
ject makes decision to change the current control state
depending on the information about the system dynam-
ics accumulated between the decision-making moments.
This accumulation of information about the system state
needs finite time because of the bounded capacity of hu-
man cognition and the delay in information processing.

A fairly suitable candidate for describing such pro-
cesses is the model of reinforcement learning. Unfortu-
nately, this model cannot be applied directly to describing
human intermittent control because on time scales much
larger than the elementary step in the decision-making
the process is strongly discontinuous. The preference for
an option is reflected only in the cumulative number of
moments when the agent has selected the given option.

The purpose of our research is to generalize the re-
inforcement learning paradigm to make it applicable to
modeling human intermittent control. We turn to the
concept of the status quo bias—preference for the cur-
rent state of affairs—in human behavior [3], for a re-
cent review of status quo bias see, e.g., [4]. Due to sta-
tus quo bias the agent will select continuously one op-
tion for a relatively long sequence of decision-making
events, which endows its actions with quasi-continuous
dynamics. It opens the gate to describing human inter-
mittent control as (i) continuous accumulation of infor-
mation about the state of controlled system within a cer-
tain priority function and (ii) and the sequence of events
when the subject makes decision on changing the control
state in response to the accumulated information.

In the present paper we propose a fairly simple model
for reinforcement learning with status quo bias and
demonstrate that it does meet the desired property of
quasi-continuous dynamics. The gist of this model is
the concept of multichannel information processing used
previously [5] to describe human learning affected by
novelty-seeking (intrinsic motivation).

It should be noted that status quo bias can be seen
as a sort of decision inertia implying a perceptual
rather than value-based mechanism. Recently [6] a new
reinforcement-learning model has been proposed within
the classical one-channel paradigm to explain the human
decision bias in favor of the same decision as in the previ-
ous trial. This model is partly incorporated into the mul-
tichannel model to be developed below.
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Figure 1: Two channels of information processing. Chan-
nel Q, which processes the information about the re-
wards, continuously interacts with Channel A, which
deals with information not directly related to the rewards.

2 Model

An agent is assumed to make repeated choice between
finite number of options i, i = 1, N and to accumulate the
information about the chosen options. The accumulated
information affects its preferences which, in turn, affects
the probability of particular option choice. We consider
that the information proceeding is implemented via two
independent mental channels. One of them is the deliber-
ate analysis of the obtained rewards, the other is irrational
and exhibits status quo bias which can be justified turn-
ing to a reason like this. “If just now we have chosen a
new option it is not reasonable to choose another option
immediately, it could be better to wait until the quality of
the chosen option becomes clear.” The two channels in-
teract via their cumulative effect on the selection (Fig. 1).

Deliberate Information Processing

Withing the channel Q each option, first, is associated
with the corresponding reward ri the agent receives each
time it has chosen option i; generally the rewards are non-
stationary, ri = ri(t). Second, the preference of choos-
ing option i is quantified by a value qi; the value qi results
from the experience the agent gains each time it chooses
the corresponding option.

At every time step tk = kτ (k ∈ N, time is measured in
units of the time gap between the neighboring decision-
making events) the preference values qi are, first, up-
dated with currently received rewards ri, and, second,
subjected to the memory loss effect, namely,

qi(tk+1) = qi(tk) + δiikrik(tk)− εqqi(tk) , (1)

where the index ik points to the option ik chosen at the
given time step tk and the value 0 < εq < 1 quanti-
fies the agent memory capacity. Because of the memory
loss effect events in the past separated from the present
by time intervals much longer than the time Tq = 1/εq
practically do not affect the agent behavior. Here the Kro-
necker delta δiik (δiik = 1 for i = ik and δiik = 0 for
i 6= ik) reflects our assumption that only the for chosen
options the preference value is increased by the obtained
reward. We accept this assumption because the foregone
payoffs may be ignored in the context of the analyzed
systems. For the same reason we do not take into account

the fact that people usually overweight low-probability
events and underweight high-probability events.

Irrational Information Processing

The channel A allows for the effect of status quo bias
on choosing the same option at the next time moment.
This effect is taking into account via ascribing some ad-
ditive preference value ∆i > 0 to choosing the same op-
tion i. The value of ∆i > 0 gradually decreases as the
time interval Ti of keeping the same choice continuously
increases

∆i(Ti) = ∆0
i · exp

(
− Ti/Ta

)
. (2)

It imitates the human preference to wait a certain time Ta
in order to recognize the quality of the made choice.

Decision-Making

Evaluation of events, conscious and unconscious, is
relative, for a discussion see, e.g., [7]. Within our model
it implies that an arbitrary shift with respect to the quan-
tities evaluating the preferences of agent choice

qi → qi + C(t) , (3)

where C(t) is some function of time t, should not affect
the probability pi of choosing any option i. In physics a
dependence p(q) meeting this condition is well known, it
is the Boltzmann or Gibbs distribution written in the form
allowing for the status quo bias:

pi(qi) =
1

Z
exp

{
β
[
qi + ∆iδiik−1

]}
. (4)

Here Z is the partition function whose list of arguments
comprises the quantities {qj} for all the options {j}; it
has been introduced to normalize the probabilities {pi}
to unity. Thereby

Z =
N∑
i=1

exp
{
β
[
qi + ∆iδiik−1

]}
. (5)

It is worthy of noting that the present model can be de-
scribed in terms of the probability of choosing option j
written as

Pi→j =
1

Z ′
exp {β [qj − qi]} ,

if its previous choice is i (i 6= j) and the probability of
choosing the same option i given by the expression

Pi→i =
1

Z ′
exp {β∆i} .

Here the partition function Z ′ is related to the previous
one, Z, as Z ′ = Z ·exp{βqi}. The constant β is a system
parameter; its inverse value, 1/β, actually specifies the
fuzzy thresholds of the agent perception. When for two
options i and j 6= i the corresponding quantities qi and
qj meet the inequalities |qi − qj | . 1/β, the agent is
not able to distinguish between them in preference, and,
consequently, has to regard the two options equivalent, so
their choice is practically equiprobable. Measuring the
quantities {qi} in the units of 1/β we may set β = 1,
which will be used below.
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Figure 2: Statistical properties of reinforcement learning for the system with two equivalent options. In simulation the
following quantities were used: Tq = 15, Ta = 15, r = 0.1 which corresponds to qmax = rTq = 1.5, ∆0 = 10. Duration
of simulation was 106 time units.
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Simulated Model

In the dimensionless form the developed model is as
follows. At each time moment tk the preference values
of the agent choice are updated according to the equation

qi(tk+1) = (1− εq)qi(tk) +

[
δiik −

1

N

]
rik(tk) , (6a)

where ik the index of the option chosen at time tk, the
status quo bias effect is governed by the folloiwng equa-
tion

∆i(tk) = ∆i(tk−1)(1− εa)δiik−1
+ ∆0

i (1− δiik−1
) ,

(6b)

where εa = 1/Ta and the probability of this choice is

pi(tk) =
exp{qi(tk) + ∆i(tk)δiik−1

}
N∑
j=1

exp{qj(tk) + ∆j(tk)δjik−1
}
. (6c)

In deriving equation (6a) we have taken into account the
invariance of the given system with respect to transfor-
mation (3) and have constructed the function C(tk) such
that the equality

N∑
j=1

qj(tk) = 0

hold for all the time moments {tk}. At the initial time
t = 0 (k = 0) all the preference values are set equal to
zero

qj |t=0 = 0 for ∀j . (6d)

Model (6) was studied numerically.

3 Results and Conclusion

To analyze the effect of status quo bias on the continu-
ity of this kind reinforcement learning we have analyzed
the choice dynamics for two options equivalent in prop-
erties, i.e., ri = r and ∆0

i = ∆. Results of simulation
which allow us to compare the system dynamics with and
without status quo bais are shown in Fig. 2. The parame-
ters used in simulation are given in its caption.

The system parameters were chosen such that with-
out the status quo bias effect the two options would be
chosen with comparable frequency at any time and the
agent does not gain a preference with respect one of them.
Thereby the distribution function Pq(qi) is unimodal and
the autocorrelation function Css(δ) of the option choice
possesses a significant maximum at the time gap equal
to zero, δt = 0. Starting from δt = 1 the correlations
are depressed. The tails of the autocorrelation function
propagating over scales about δt & 40 are caused by
probabilistic fluctuations of the option preference. They
macroscopic, however, cannot be related to smooth vari-
ations in the choice dynamics. It is also justified by the
estimate of the mean life time of a chosen option.

The situation changes radically in the case of signifi-
cant status quo bias. The life time of a chosen option be-
comes macroscopic, which is justified by its distribution,
the shown time pattens of the choice dynamics and the
preference value variations, as well as the autocorrelation
function. In this case the distribution Pq(qi) of prefer-
ence values becomes bimodal. It reflects the fact that due
to status quo bias the agent is able to evaluate the quality
of newly chosen option, which endows the system with
quasi-continuous dynamics.

In summary, the obtained results allows us to state that
the paradigm of reinforcement learning with status quo
bias can provide the desired framework for modeling hu-
man intermittent control over mechanical systems.
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Abstract 

Ultrasound diagnosis enables us to evaluate 
lifestyle diseases noninvasively and it is valuable for 
detection of plaque and obtaining several indices, 
such as flow mediated dilation. On the other hand, it 
is difficult to diagnose by using ultrasound device at 
home or clinic where there is no medical specialist. 
Previous study proposed a re-assemblable robot with 
ultrasound diagnosis. However, assuming home or 
clinical use, the robot must control its probe 
automatically by itself. In this study, we propose the 
automatic measurement by using reassemblable 
robot for ultrasound diagnosis. Firstly, we improve 
kinematics of the robot and confirm that the influence 
of noise from sensor was small from simulation. 
Secondly, we design and create a new phantom for 
calibration of two probes and we show we can 
measure with enough accuracy. Finally, assuming 
measurement for brachial artery, we build an 
automatic ultrasound diagnosis method and evaluate 
by phantom. These results show the possibility of an 
automatic diagnosis by the reassemblable robot. 

Keywords Ultrasound diagnosis, Reassemblable robot, 

Automatic diagnosis

1 Introduction 

Lifesytle diseases are the leading cause of death in Japan, 

therefore early diagnosis of them is important. Ultrasound 

diagnosis can enable to evaluate lifestyle diseases 

noninvasively. It is valuable for detection of plaque and 

some index, such as flow mediated dilation (FMD), 

obtaining from medical ultrasound images. Lifestyle 

diseases cause us to occur serious symptom unconsciously, 

thus we need to detect them earlier and spread how to 

diagnose them widely. Besides, bioinstruments for home 

use have become more popular associated with trend of 

health-conscious. Some index from ultrasound diagnosis 

varies corresponding to lifestyle [1]. Developing simple 

measurement devices will improve health care at home. 

On the other hand, ultrasound diagnosis needs pro-

fessional skills and enough experiences. Consequently, it 

is difficult to diagnose where there is no medical specialist. 

Several robots were developed for direct assistance for 

manipulating probe and mechanism construction for 

remote inspection. However, ultrasound diagnosis has 

many requirements in inspection. Hence, it was desired to 

build new robots fulfilling those requirements for various 

inspection. To solve this problem, reassemblable robot 

with ultrasound diagnosis was proposed for measuring 

multiple body regions [2], [3]. Assuming home or clinical 

use, the robot must control its probe automatically, 

therefore improving mechanism of the robot is desired. In 

this study, we consider about automatic measurement with 

the reassemblable robot for ultrasound diagnosis. We 

establish automatic measure-ment system and evaluate it. 

Firstly, we consider the robot can be improved. 

Particularly in kinematics, we implement certain 

kinematics taken into account constraint condition 

following reality and estimate about locating the probe. 

Secondly, we confirm installing another probe is effective 

for diagnosis and create new phantom for measuring probe 

location. Thirdly, we investigate space restrictions of 

probe operation in automatic recognition system in actual 

measurement. Finally, assuming measurement for brachial 

artery, we build an automatic ultrasound diagnosis method. 

2 Kinematics 

2.1 Methods 

Iwahashi and Matsuno developed reassemblable robot 

for home care which has a parallel link construction having 

six degrees of freedom [2], [3]. The robot has three trays 

and can move in two directions (Fig. 1). There are two 

coordinate systems in this robot. First one is top board 

rectangular coordinate system (System 1) and second one 

is general rectangular coordinate system (System 2). In 

system 1, the directions of x axis is determined the 

directions to the rotation bearing of tray 1 from the center 

of top board, z axis is determined as normal vector of top 

board and y axis is orthogonal to x and z axis. In system 2, 

the origin of coordinate is initial position of tray 3. X and 

Y axis are the direction of movement of tray and Z axis is 

determined as opposite direction to gravity. The robot 

obtains angles between top board and each link with angle 

sensors, and we defined 𝜑𝑖  (i=1, 2, 3) as the angles from

angle sensor values. 

The position of each tray (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) is calculated from

𝜑𝑖  by solving inverse kinematics. Previous study [2]

calculated the top board position from an angle and 

accelerate sensors. However, the kinematics of the 

previous study [2] was redundant, because it had no 
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Fig. 1 Schematic of the reassemblable robot 

 

constrains in position information. 

We propose a new kinematics including realistic 

constrains. Because each tray moves on same plane, we 

can add a constraint condition by the following equations 
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From each tray position, the normal vector of the tray plane 

�⃗� = (𝑛1, 𝑛2, 𝑛3) can be obtained. Finally, the angle of the 

top board (𝜃𝑋, 𝜃𝑌) in system 2 can be calculated by 
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The rest of the procedures for calculating the operation 

command of robot movement is same with previous study 

[2].  

The advantage of proposed kinematics is to know the 

probe position only from angle sensor. When the probe 

moves, firstly, initial tray position is derived by solving 

reverse kinematics about initial probe position obtained 

from angle sensor. Secondly, same calculation about 

moved tray position is conducted. Finally, the amount of 

movement about tray is decided. However the output value 

from angle sensor contains noises, there is an error 

between measured and calculated value of probe position. 

We evaluate the accuracy and the robustness to sensor 

noise in new kinematics by simulation. Firstly, we set 

initial probe posture using an angle sensor added noise. 

Secondly, we send movement command to the robot 

shifting ±50 mm and ±20 degree and compare measured 

posture and calibration posture derived from forward 

kinematics. The noise is set from specification of the angle 

sensor (TS5667N120, Tamagawa seiki co., ltd.). The noise 

is white Gaussian noise and average is zero and standard 

deviation is 5.5×10-2 degree.  

2.2 Results 

When the probe moved -50mm to z-direction, each error 

in location and position was maximum. This was caused 

by influence of error in angle sensor the most strongly 

because the angle dramatically changed when the probe 

moved to z-direction. Next, we moved the probe -50mm to 

z-direction 100 times which produced the strongest error. 

This robot was designed as motion resolution of probe was 

0.1mm about its location and 0.1 degree about its position. 

We got the result difference between command and 

measured result. The error average about location was 

0.028 mm and standard deviation was 0.014 mm. About 

position, the error average was 0.013 degree and standard 

deviation was 0.01 degree. Each error was smaller than 

motion resolution, therefore we conclude the new 

kinematics has enough performance for calculating the 

probe position against the sensor noise. 

3 Probe attachment and calibration 

3.1 Methods 

We manipulate a probe using information of the latest 

image in ultrasound diagnosis. The robot also carries out 

the appropriate calibration and evaluation of probe from 

image while it moves its probe in diagnosis. However, 

information from images is limited and there are regions 

where we cannot obtain information about location and 

position. To solve this problem, we attach second probe 

orthogonally (Probe 2) to the original probe (Probe 1). 

Diagnosis with multiple probes is valuable owing to 

improvement of inspection efficiency and simplification of 

tracking target. Moreover, we will be able to evaluate more 

about calibrating because of additional information from 

Probe 2. 

In order to inspect with multiple probes, we must decide 

relation between location and position of each probe. We 

need to build simple calibration method because we attach 

and calibrate probes according to targets. By the way, 

measuring a phantom is a simple calibration method. 

However, it is impossible to measure six degrees of 

freedom by conventional calibration methods [4], [5], [6]. 

 

 
Fig. 2 Phantom design 

 

 
Fig. 3 Setting of multiple probes 
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In this chapter, we design and create new phantom with 

which we can measure location and position of probes 

from ultrasound image. Secondly, we establish calibration 

method and evaluate it. 

Figure 2 shows a conceptual diagram and each cross- 

sectional view of new phantom. We create the phantom by 

drilling holes on an acrylic plastic like each cross- 

sectional view and plastic rods through holes wires like the 

conceptual diagram. We can calculate location and 

position of each probe from slope of points of wire, length 

of line and distance from bottom drawn on ultrasound 

image. Especially, we can measure x-coordinate from two 

points of different distance from bottom and y-coordinate 

from wires put diagonally which convert lateral direction 

variation into longitudinal one. Regarding θy, we 

determine there is no slope around y-axis when two 

vertical wires are displayed.  

In this method, we can derive a relation between 

location and position of each probe by the measured 

images of the phantom. Therefore, when we move and 

rotate the probe to each direction, we speculate calculated 

location and position will move similarly. Then, we 

examine correspondence between measured movement 

and true movement after the probes were moved and 

rotated from initial posture to each direction. Figure 3 

shows setting of multiple probes and conditions of 

experiment. 

3.2 Results 

Figure 4 shows lateral and rotation movement of probe 

to each direction corresponds to measured probe variation 

of location and position. Table 1 gives errors abou t 

 

 
Fig. 4 Measured probe movement versus true probe 

movement 

(a) x (b) y (c) z (d) θx (e) θz 

 

Table 1 Result of errors in probe movement (mean±std) 

x (mm) y (mm) z (mm) θx (deg) θz (deg) 

0.11±0.41 0.15±0.33 0.16±0.17 0.20±0.22 0.55±0.38 

location and position. We evaluated these errors by 

calculating the diameter of brachial artery which was 

important index for FMD. Diameter of brachial artery is 

about 4 mm typically. About an error of x-direction, when 

we put the probe on 0.52 mm shifted place from the center 

of blood vessel, the measured diameter of vessel was 3.86 

mm assuming blood vessel was a cylinder. In this case, 

error of FMD was 3.6 %. Similarly, about an error around 

z-axis, when we put the probe on 0.93° shifted place from 

the center of blood vessel, vessel diameter was 3.95 mm 

and the error was 1.3 %. Influence on inspection accuracy 

of FMD is smaller than 5-10% in each case which is 

coefficient of variation at hospitals. Thus utilizing this 

method can calibrate with enough accuracy. For more 

precise measurement, we need to reconsider the material 

for phantom and redesign taking into account target for 

measurement. 

4 The space restrictions of probe operation 

in automatic recognition system 

In actual measurement by using robot, we need to take 

into consideration of calibration of probe and the space 

restrictions of probe operation varying in accordance with 

the target. Thus, we investigated the space restrictions in 

some artery-measurement situations. We defined targets as 

the carotid artery and brachial artery, which are popular in 

medical inspection. We reassembled the robot. The length 

of links was 464 mm (link 1) and 482 mm (link 2, 3) for 

the carotid artery. On the other hand, the length of them 

was 237 mm (link 1) and 264 mm (link 2, 3) for the 

brachial artery. Figure 5 shows the state of the actual 

measurements for arteries and ultrasound images of them 

by using the reassembleable robot. Especially in the 

carotid artery, it is more complicated to build an automatic 

recognition system than brachial artery because we need to 

take into consideration of the restriction of movement 

territory, as probes may hit against a jaw. Also, we need to 

consider the involuntary movement caused by breathing. 

Thus, the proper instructions for controlling the breathing 

should be given to the patients. 

5 Automatic blood vessel recognition 

5.1 Methods  

 
Fig. 5 Measuring the arteries and color Doppler images 

(a) Brachial artery, (b) Carotid artery 
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We discuss about the automatic blood vessel recognition 

system for brachial artery. We set brachial artery as a target 

for inspection and identify issues from actual inspection 

and robot movement. The robot demands automatic target 

recognition for inspection. We propose a new inspection 

technique for measuring the blood vessel. 

Figure 6 is a schematic of the proposed automatic blood 

vessel recognition method with two probes for brachial 

arteries. First, the probes were controlled to downwards 

until it touched the skin (Fig. 6 (a)). The judgement of 

touching was evaluated with a rate of brightness variation 

(contrast) of the probe 1. When the probe is above the skin, 

the brightness is low. When the probe touches the skin, the 

brightness is high. Second, the angle of the probe 𝜃𝑥 was 

adjusted as the probe 1 touches firmly (Fig. 6 (b)). The 

judgement of firmly touching was evaluated with a ratio of 

black pixels in the left of the image and those in the right. 

Third, the probes were moved to the center of the vessel 

(Fig. 6 (c)). The position was evaluated by the image of the 

probe 2 as the vessel was on the center of the image. 

Finally, the angle of the probe 1 was rotated to the correct 

position (Fig. 6 (d)). The angle was evaluated with a length 

of the vessel in the image.  

We performed following three experiments with 

Doppler flow phantom (Model 524 Peripheral Vascular 

Doppler Flow Phantom, ATS Laboratories) in order to 

detect blood vessel; (a) touching judgement by position z 

and the contrast, (b) firmly touching judgment by and the 

ratio of black pixels, and (c) correct rotation by 𝜃𝑧. The 

probe recognized that it touched to the target in parallel 

when a ratio of the number of black pixels is below 1.2 in 

experiment (b). 

 

 
Fig.6 Procedure to automatic detection of the vessel 

 

Fig.7 Evaluation of probe contact judgement 

5.2 Results 

Figure 7 shows results. From the experiment (a), after 

the amount of movement was over 7 mm variation ratio of 

brightness was more than four (Fig. 7 (a)). This means 

probe touched the target. From the experiment (b), initial 

value in the black pixel was more than two, and we 

confirmed the value fell to near one when the probe rotated 

in parallel and judged the probe had contact firmly to the 

target. From the experiment (c), we confirmed the length 

of vessel increased as the probe rotated and decreased after 

the maximum length was detected (Fig. 7 (c)). Figure 7 

shows the proposed method can be used for the vessel 

recognition system. 

6 Conclusions 

We propose an automatic measurement system using 

reassemblable robot for automatic ultrasound diagnosis. 

Firstly, we improved kinematics of the robot. Secondly, we 

designed and created a new phantom for calibration of two 

probes. Finally, we performed an automatic blood vessel 

recognition experiment and evaluation by phantom. We 

showed the possibility to inspect automatically with this 

robot. 
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Abstract 

Prior studies have been performed about weight 
illusions showing that grip movements can 
manipulate visual feedback. However, in these 
experiments, usually only the appearance of the 
object is changed, such as in the Material-Weight 
Illusion (MWI) or Size-Weight Illusion (SWI), the 
most famous among the weight illusions. Here, we 
confirm the phenomenon of the weight illusion 
being induced by creating a temporal difference 
between an object’s motion information (lifting) 
and its visual information (lifted). We used here a 
virtual reality device with a stereoscopic object 
gripping system using two haptic devices. We 
show that it was the manipulation of time that 
caused the illusion. Still, we could observe neither 
change of grip force (GF) nor load force (LF) in 
grip movements of the participants. 

Using transcranial magnetic stimulation (TMS), 
we investigated the activity of the primary motor 
cortex by examining the excited state of this area 
during presentation of a visual transmission delay. 
We observed that the amplitudes of motor evoked 
potentials were different between various 
transmission delay times. This result suggests that 
the weight illusion is associated with activation of 
the motor cortex and not muscle activity. 

Keywords Grip, Transcranial Magnetic Stimulation, 
Motor Evoked Potentials, Weight Perception, Haptic 
Device 

1 Introduction 

Many previous studies about grip movements, such 

as that by Kinoshita et al
[1]

, suggest that grip force (GF) 

is influenced by the skin-friction of objects, and many 

studies have focused on the force on each finger during 

gripping
[2]

 and the predictive control model of grip
[3]

. 

However, the detailed control mechanisms of GF have 

not yet been revealed. 

All humans perceive the weight of an object when 

they grasp it. Therefore, studies about illusory weight 

perception caused by visual information have also been 

conducted. Some typical examples are the Size-Weight 

Illusion (SWI), which is induced by object size
[4][5]

, and 

the Material-Weight Illusion (MWI), which is induced 

by object weight
[6]

. It has been shown that visual 

information is a critical factor for the perception of 

weight, but the exact cause of such illusions is not yet 

known. There are two theories that hypothesize about 

the cause. One presumes that it is induced by the 

difference between the internal motion prediction and 

real feedback
[7]-[11]

 , and the other that it is induced by 

the difference between the quantity that is perceived by 

high level perception, which is independent from the 

sensorimotor system and is expected 
[12]-[14]

. 

In this study, we investigated the influence of 

differences in the time (delay/advance) between visual 

information and motor information on weight 

perception. Furthermore, we investigated the 

electromyogram (EMG) of FDI to check whether they 

change with GF, as well as brain activity associated 

with the illusion that is induced by timing differences. 

We conclude that the primary motor cortex, which is 

the final output of the motor command system, plays a 

role. 

2 Materials and Methods 

2.1 Subjects 

All experimental procedures were conducted with the 

approval of the institutional ethics committee. Our 

subjects were two right-handed, healthy male adults 

(Age: 23). All subjects received a description of the 

experiment and a check of their brain before the 

experiment. We obtained written informed consent 

from all subjects. 

2.2 Experimental Setting 

In this study, we constructed a virtual environment to 

produce a temporal difference between visual and 

motor information (Fig.1), and used a 3D-monitor and a 

half-mirror to produce three-dimensional visual 

information. Furthermore, two haptic devices 

(Phantom® Desktop, 3D Systems, Rock Hill, SC, USA) 

were used for this system in order to interfere with the 

object in the virtual environment, and each device was 

mounted on the index finger and thumb. We used a blue 

cube with a weight of 200 g and a side-length of 5 cm 

as a gripping object so as not to induce the SWI or 

MWI. 

All subjects lifted the object under a control 

condition and one of the six test stimuli so as not to be 

biased by other test stimuli. The control visual- 
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stimulation had a 0 ms difference in visual information, 

and the test stimuli had 0 ms, 20 ms, 40 ms, 60 ms, 100 

ms, or 160 ms temporal delay-difference. Each test 

stimulus was presented when the GF exceeded 0.2 N, 

and was presented a total of 15 times. In addition, 

control and test stimuli were randomly presented. 

 

 
Fig.1: Experiment System 

 

2.3 Transcranial Magnetic Stimulation  

We used transcranial magnetic stimulation (TMS) to 

investigate the effects on weight perception of temporal 

differences in information, as well as to look at the 

excitability of primary motor cortex. We measured 

motor evoked potentials (MEP) from the first dorsal 

interosseous muscle (FDI). TMS intensity was 110% of 

the resting motor threshold, which was the minimum 

stimulation intensity required for an MEP with an 

amplitude of at least 50 μV to appear with a probability 

of 50%. 

 

2.4 MEP and Myoelectric Measurement 

We used an electromyograph (Neuro pack Σ, Nihon 

Kohden Corp., Tokyo, Japan) and magnetic stimulator 

(Magstim200, The Magstim Company Ltd,  

Carmarthenshire, UK) with a double coil for MEP 

measurement. The target muscle was FDI, and 

electromyography data were obtained through an A/D 

converter (USB-6009, National Instruments, Austin, TX, 

USA). Electromyographs were measured over 26 

ms starting with grip onset until the MEP was 

induced. Equipment and the target muscle used 

were the same as for the MEP measurement. In all 

experiments, MEP and electromyograph were measured 

and were high- and low-pass filtered at 3000 and 5 Hz, 

respectively. 

2.5 Experimental Task 

First, the object was presented 1000 ms after 

presentation of a fixation point. Then, the subjects were 

stimulated by TMS as the MEP was recorded. A beep 

tone was played 300 ms after the object presentation 

onset. Subjects gripped the object after hearing the beep, 

and lifted it to a marked position 5 cm away. A second 

TMS pulse was administered 800 ms after the time 

delay, and an MEP was recorded. Subjects released the 

object when the screen became blank after a third beep. 

This comprised one trial. After odd-numbered trials, 

subjects immediately performed the next trial. After 

even numbered trials, however, subjects were given 

enough time to rest to stabilize their resting muscle 

potential. TMS was presented a total of 180 times 

through all experiment tasks. All of the subjects 

practiced this task without test stimuli and TMS before 

performing experimental trials. 

2.6 Analysis 

We analyzed the MEPs by adding, averaging, and 

calculating the amplification rate of the MEP amplitude, 

during resting and the visual delay task. For muscle 

potentials, we calculated iEMG from electromyography  

data.  

3 Results 

3.1 The Illusion of Weight Perception 

The result of weight perception in the visual delay 
tasks is shown in Fig.2 The vertical axis and shows the 

rate at which subjects reported the object as heavier 

than the reference, and the horizontal axis shows the 

temporally manipulated delay-time [ms]. Error bars 

indicate standard error. Repeated measures ANOVA 

results show significant relation ships(F(5, 54)= 2.386, 

p < 0.01). After using Sheffe’s method of correction for 

multiple comparisons show there in 0 vs 100 and 160, 

20 vs 100 and 160, 40 vs 160, and 60 vs 160 ms . 

 

 
Fig.2: Weight Perception 

 

3.3 GF on Delay and Precede Stimuli 

Fig.3 shows the results of GF during the grip 

movements of subjects for each stimulus condition. The 

vertical axis shows peak GF during movement (in N) 
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and the horizontal axis shows the test stimuli. Data were 

obtained from built-in software in the two haptic 

devices. Error bars indicate standard error. Repeated 

measures ANOVA results show no significant relation 

ships(F(12,182) = 0.04, p = 0.99). 

 

Fig.3: Peak Grip Force 

 

3.4 LF on Delay and Precede Stimuli 

Fig.4 shows LF measurements during the grip 

movements of subjects for each stimulus condition. The 

vertical axis shows peak LF during movement (in N) 

and the horizontal axis shows the test stimuli. Error bars 

represent standard error. A repeated measures ANOVA 

showed a significant difference between conditions 

(F(12, 182) = 4.62, p < 0.01). After using Scheffe’s 

method of correction for multiple comparisons, 

however, this significance did not remain. 

 

Fig.4: Peak Load Force 

 

3.5 MEP amplification rate 

The results of adding, averaging, and comparing 

MEPs at resting and in each test condition is shown in 

Fig.5. The vertical axis shows MEP amplitude (in μV) 

and the horizontal axis shows the test stimuli. The 

amplification rates of the amplitudes in the various 

conditions were: control 69.0%, 0 ms 49.1%, 20 ms 

71.6%, 40 ms 28.2%, 60 ms 19.5%, 100 ms 38.6%, and 

160 ms 57.1%. 

Fig.5: MEP amplitude 

 

3.2 Electromyogram (EMG) 

Fig.6 shows integrated electromyogram (iEMG) for 

each test stimulus in gripping. The vertical axis shows 

iEMG (in mV) and the horizontal axis shows the test 

stimuli. Error bars represent standard error.  

 

 
Fig.6: Integrated Electromyogram 

 

4 Discussion 

4.1 MEP and iEMG 

From our results, we can observe the change of the 

MEP amplification rate between small and large 

temporal delays in visual information. We expected to 

see an increase in the amplification rate as the delay 

increased, but our obtained data did not show this. In 

the 20 ms delay condition, however, the rate is larger 

than in the control and 0 ms conditions. Furthermore, 

the iEMG was not changed in all the stimulus 

conditions. This suggests that the illusion that was 

induced by the 20 ms artificial visual transmission delay 

is related to primary motor cortex. In the other large-

delay stimuli, we could not see any significant effects. 
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5 Conclusions 

In this study, we measured GF, LF, iEMG, and MEPs 

in order to investigate whether the weight illusion 

caused by temporal differences in visual information 

and motor information is reliant on primary motor 

cortex. As a result, we could see non-significant 

changes in the GF, the LF and the iEMG in gripping. 

However, could see large changes in the MEP 

amplification rate in the 20 ms delay condition, 

suggesting that the primary motor cortex is involved in 

the weight illusion induced by artificial visual 

transmission delay. Although we found that thing, it 

cannot be certain because we tested only two subjects. 

Therefore, we need continue to investigate this illusion 

with a greater number of subjects. In addition, it is 

necessary to reproduce the same experiment but with an 

artificial visual transmission advance rather than delay. 
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Abstract 

Optical motion capture systems are widely utilized 
in human motion analysis, where motions of small 
markers attached to the body are measured. Skin 
motion artifacts (SMA), erroneous motions of 
markers relative to the skeletal links, are one of the 
major deficits degrading measurement accuracy. 
Here, we quantitatively characterized the SMA 
during human bipedal walking. To this end, we 
measured positions of markers during walking 
experimentally, and clarified that the SMA during 
periodic walking was also periodic, which could be 
approximated by the fourth order Fourier series. 
We then evaluated how the SMA influences 
estimation of joint torques in inverse dynamics 
analysis, and showed that the estimated joint 
torques was non-negligibly deviated from the true 
torques, even if the SMA was small.  

Keywords Motion Analysis, Skin Motion Artifact, 

Posture Estimation, Multi Rigid Link System

1 Introduction 

Experimental measurement using motion capture 

system is one of the effective methods in human motion 

analysis [1,2]. Spatiotemporal data of captured markers 

placed on the human body enable us to reproduce the 

body motion on a computer, providing a basis for 

understanding dynamics and mechanisms of human 

motor control. In a typical procedure of human motion 

analysis in biomechanics and neurophysiology, the 

time-series data for the position of the markers are often 

assimilated into a multi-rigid-link model that 

approximates the body of experimental subjects in order 

to represent the human movement, and then joint 

torques (kinetics) during movement are estimated using 

the inverse dynamics analysis [3,4]. Accurate 

estimation of the joint torques is of critical importance, 

because the joint torques involve various information 

about the underlying motor control. 

In the analysis using motion capture system, skin 

motion artifacts (SMA), erroneous motions of markers 

relative to the skeletal links, are one of the major 

deficits degrading measurement accuracy [5-7]. SMA is 

caused by deformation of muscles and skins, which 

induces shift in the marker position relative to skeletal 

system, leading to erroneous estimation of movement of 

the skeletal system embedded in the muscular system.  

Although there are a number of studies attempting to 

reduce the influence of SMA, there is no satisfactory 

solution so far. In this study, we measured positions of 

markers during walking were experimentally, and 

characterized SMA during human bipedal walking. We 

then evaluated how the SMA influences estimation of 

joint torques in inverse dynamics analysis, and showed 

that the estimated joint torques was non-negligibly 

deviated from the true torques, even if the SMA was 

small.  

2 Methods 

2.1 Measurement of bipedal walking 

Three young healthy adults (mean ± SD, 23 ± 2.83 

years old, height 1.73 ± 0.03 m, weight 64.67 ± 6.13 

kg) participated in this study. All the subjects provided 

written informed consent. The experimental procedures 

were approved by the ethical committee for the human 

studies at Osaka University. 
Subjects were requested to walk on a treadmill with 

arms folded on their chest. Preferable walking speed 

was determined individually (1.03 ± 0.21 m/sec). Three 

trials of 90 seconds were performed. Fourteen infrared 

reflective markers were placed on the characteristic 

points on the body of each subject (Fig. 1 and Table 1). 

Positions of the markers were captured using a motion 

capture system (SMART-DX, BTC, Italy) with eight 

infrared cameras and sampling frequency of 300 Hz. 

Ground reaction force was measured by force sensors 

embedded in the treadmill with sampling frequency of 

1,200 Hz. The time series data of each marker position 

and ground reaction force were digitally low-pass 

filtered offline (fourth-ordered Butterworth filter with 

zero phase lag, cut-off frequency of 10 Hz). Then the 

marker position was projected on the sagittal plane, 

where x-axis is anterior-posterior direction of body, and 

y-axis is superior-inferior direction. The ground

reaction force data were resampled with sampling

frequency of 300 Hz to align with the marker position

data. We detected time instants of every left heel

contact from the ground reaction force, and extracted

time profiles of the marker positions for every gait

cycle, by which we obtained data for 10 cycles from a

steady-state walking. In this sequel, we denote the

position vector of the markers as 

mi,j[n]=(mi,j
x [n], mi,j

y
[n])

T
 (i={HAT, T-L/R, LL-L/R, F-

L/R}, j={A, B}, n indicates number of data. See Fig. 1 

and Table 1 for details.). 
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2.2 Posture estimation of human body 

segment from marker position data 

We modeled the human body during walking by a rigid 

seven-link model, consisting of upper body (Head-Arm-

Trunk: HAT), left and right thighs, lower legs, and foots, 

as in Fig. 1(b). Here, we illustrate how the position and 

posture of each body segment was estimated from the 

marker position data. We used a method based on 

algorithm proposed in the previous study [9]. Since this 

algorithm was not developed for precise estimation of 

walking movement, the estimated position and posture 

of each body segment would be influenced by SMA, 

which was analyzed in this study.  

 Let us define a local coordinate fixed on a segment. 

The origin oi[n] (i={HAT, Thigh-L/R, LowLeg-L/R, 

Foot-L/R}) and the coordinate transformation matrix 

Ai[n] of the local coordinate represents the position and 

the posture of the segment. In this algorithm, the 

position and the posture of each segment were defined 

according to position of the joints (hip, knee, and ankle 

joints) in the global coordinate, where we assume that 

each joint is fixed on the corresponding segment. To 

obtain the joint positions, tentative position oi'[n] and 

posture Ai'[n] of each segment were estimated from the 

marker position as follows.  

oi'[n]=
mi,A[n]+mi,B[n]

2
,  Ai'[n]=(vi

x[n] vi
y[n]), (1) 

where vi
x[n] is a unit vector directing from a marker A 

to a marker B on the i-th segment, and vi
y

[n] is  

orthogonal to vi
x[n]. We denote the position of the k-th 

joint in the local coordinate of the i-th segment as J̅i,k 

(i={HAT, T-L/R, LL-L/R, F-L/R}, k={Hip-L/R, Knee-

L/R, Ankle-L/R}), each of which is a time-independent 

constant. The joint position in the global coordinate 

Ji,k[n] is expressed as Ji,k[n]=oi ' [n]+Ai ' [n] J̅ i,k. For a 

given joint, its position can be described by two ways. 

For example, the knee joint position can be described 

by the local coordinate of thigh and that of shank. If the 

positions and postures of two adjacent i-th and l-th 

segments are precisely estimated, the equality 

oi'[n]+Ai'[n]Ji,k − ol'[n]+Al'[n]Jl,k = 0  holds for the 

position of the k-th joint connecting these two segments. 

However, in practice, this equality cannot be satisfied 

because of the inaccuracy due to SMA. A better 

estimate of the k-th joint position J̅i,k  in the local 

coordinate should minimize the following cost function: 

∑ |(oi'[n]+Ai'[n]Ji,k)-(ol'[n]+Al'[n]Jl,k)|n . (2) 

Since we have two optimal Ji,k  and Jl,k  that minimize 

(2) for the k-th joint, we defined the optimal joint 

position as the midpoint of  Ji,k  and Jl,k . Moreover, 

since we consider a model of biped gait in the saggital 

plane, we defined Hip joint position as midpoint of Hip-

L and Hip-R. 

Position and posture of each segment were defined as 

follows: the origin of each of Thigh-L/R and LowLeg-

L/R was defined as the midpoint of the proximal and 

distal joints. The x-axis of the local coordinate was 

defined by the unit vector directing from the proximal 

to distal joints. For Foot-L/R and HAT segments, the x-

axis of the local coordinate was defined by the unit 

vector directing from the proximal joint to the midpoint 

of two marker on the segment, and the origin was set on 

the x-axis at the mean distance between the joint and the 

midpoint of two markers. 

2.3 Evaluation of Skin Motion Artifact 

We defined SMA of a marker on a given segment as a 

fluctuation of the marker position in the local 

coordinate of the segment. We referred to the marker 

position vector in local coordinate as �̅�i,j[n]=(m̅i,j
x [n], 

m̅i,j

y
[n]), whose global position is mi,j[n]=oi[n] 

+Ai[n]�̅�i,j [n]. If there is no SMA, �̅�i,j [n] is a time 

independent constant vector. However, in practice, 

�̅�i,j[n] changes in time. �̅�i,j[n] that includes SMA can 

be obtained as follows: 

mi,j[n] = (Ai[n])−1(mi,j[n] − oi[n]) (3) 

�̅�i,j [n] was devided into several segments, each of 

which spans a gait cycle according to the left heel 

contact timings, and they were phase-locked averaged. 

Since �̅�i,j[n] should be a constant if no SMA exists, the 

fluctuation of  �̅�i,j[n] represents the SMA, itself. Under 

Table 1: Marker ID and attached position (j={A,B}) 

ID  Attached position 

mHAT,j (A) Cervicale (B) Solar plexus 

mT-L/R,j (A) Left and Right greater trochanter 

(B) Left and Right Femur lateral epicondyle 

mLL-L/R,j (A) Left and Right Tibia lateral condyle 

(B) Left and Right  Lateral malleolus 

mF-L/R,j (A) Left and Right Pterion 

(B) Left and Right  Metatarsal fibular 

 

Figure 1: Markar positions during experimental 

measurement, and seven-rigid-link model of human 

during bipedal waking. (a) Marker positions. See Table 

1 for details. (b) The seven link model which consists 

of upper body (HAT), left and right thigh (Thigh-L/R), 

left and right Lower Leg (LowLeg-L/R), and left and 

right Foot (Foot-LR). 
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the assumption that the SMA is a periodic function, 

�̅�i,j[n] was expanded by Fourier series as follows. 

m̅i,j
z [n] 

= ci,j
z + ∑ (𝑎𝑖,𝑗,𝑘

𝑧 cos
2𝜋𝑘𝑛

𝑁
+ 𝑏𝑖,𝑗,𝑘

𝑧 sin
2𝜋𝑘𝑛

𝑁
)K

k=1 , 
(4) 

where z={x,y}, N indicates the data length of one gait 

cycle, and K is the order of the expansion. 

2.4 Influence Evaluation of skin motion 

artifact on Joint Torque Estimation 

We evaluated how the SMA influenced estimation of 

joint torques during walking. We used a rigid-seven-

link model which could establish a stable biped gait in 

the sagittal plane [3,10]. Through dynamic simulation 

of the model, we obtained kinematic (position õi[n] and 

posture Ãi [n] of each segment) and kinetic (ground 

reaction forces and joint torques) data according to the 

motion equation: 

M(θ)θ̈+ B(θ, θ̇) + K(θ) = F + τ, (5) 

where, θ is vector of position and postures of all 

segments, M is the inertia matrix, B is the centrifugal 

and Coriolis force, K is the gravitational force and 

torque, F is the ground reaction force, and τ is the joint 

torque vector. Subsequently, using the model 

kinematics and experimental SMA obtained by Eq. (4), 

we numerically simulated SMA-effected marker 

positions as follows. 

mi,j=õi[n]+Ãi[n]m̅i,j[n]. (6) 

In this study, we used m̅i,j[n] obtained from Subject 3. 

Using the same algorithm in Sec. 2.2, we estimated 

position and posture of each segment of the model, 

calculated the SMA-affected joint torques τ[n]=(τHip-

L,τKnee-L,τFoot-L,τHip-R,τKnee-R,τFoot-R)
T
 according to Eq. 5, 

and to compared them with the non-SMA affected true 

joint torques. 

3 Results 

3.1 Experimental Skin Motion Artifacts  

Fig. 2 shows the phase-locked averages and standard 

deviations of SMAs of eight markers during biped gait, 

which were obtained using 10 gait cycles for each 

subject. SMA of each subject was qualitatively similar, 

but not necessarily quantitatively. The standard 

deviations were relatively small, which means that 

SMA during periodic motion was also periodic. Cycle 

length of SMA of markers on HAT was half of walking 

cycle, while those of markers on the other segments 

were the same as the gait cycle. In all subjects, 

amplitude of SMA of the markers on Thigh was large, 

especially in y-component, which was orthogonal to the 

line connecting between the hip and knee joints. 

Fig. 3 represents the Fourier coefficients of SMAs for 

the data shown in Fig. 2. In all subjects, the first order 

Fourier coefficient with gait period (k=1) and the 

second harmonics were large. The higher order 

coefficients were much smaller than the first and second 

components. Indeed, the SMAs were approximated by 

up to the fourth order Fourier series. 

3.2 Influence evaluation of Skin motion 

artifact on joint torque estimation 

Fig. 4 shows the influence of SMAs on the joint 

torque estimation. In each panel, the joint torques 

 
Figure 3: Fourier coefficients of SMAs (j={A, B}). In 

each panel, horizontal axis is the order of expansion. 

Circles connected by solid line and triangles connected 

by dashed line are the coefficients of cos and sin waves 

of the marker A. Squares connected by chain line and 

diamonds connected by dotted line are the coefficients 

of cos and sin waves of the marker B. Blue, green, and 

red colors are for Subjects 1, 2, and 3, respectively.  

 

Figure 2: Time series data of estimated 

skin motion artifact (j={A, B}). In each 

panel, Horizontal axis is gait phase (0% 

and 100% correspond to the left heel 

contact and 50% corresponds to the right 

heel contact. Solid lines are phase locked 

average of the skin motion artifact of the 

marker A, and dashed lines are those of 

the marker B, which were obtained from 

10 gait cycles. Color-bands around the 

solid curves are the standard deviation. 

Blue, green, and red colors represent  

Subjects 1, 2, and 3, respectively. 
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estimated from the SMA-affected markers were 

qualitatively similar to the true non-SMA affected joint 

torques. However, there are some non-negligible 

differences, e.g. torque at the left knee joint estimated 

from the SMA-affected marker position took large 

values continuously during stance phase of the left leg, 

and the torques at the right knee and the ankle joints 

also took larger values than the true torques after the 

left and the right heel contacts. At the peak of joint 

torques, the SMA-affected joint torques were about 

20% larger than the true joint torques.  

 4 Discussion and Conclusions  

In this study, we analyzed spatiotemporal variations of 

the markers placed on the human body during bipedal 

walking, and evaluated the erroneous skin motion 

artifact (SMA) included in the marker movement. We 

confirmed that all makers fluctuated periodically with 

respect to the local coordinate of each body segment, 

and movement of the markers on thigh was relatively 

large. By performing the Fourier analysis, we found that 

the SMAs could be fitted by the fourth order Fourier 

series, meaning that the SMAs include up to fourth
 

order higher harmonics of the gait cycle. In addition, we 

evaluated how the SMA influence the joint torque% 

estimation in the gait analysis, and showed that the joint 

torques that were calculated by using SMA-affected 

marker positions could be 20% larger than the actual 

joint torques. 

The analysis in this study showed that differences 

between the SMAs-affected and the true joint torques 

could reach 20% in the peak torque amplitude. This 

error cannot be negligible, implying that a new 

algorithm of posture estimation, which can reduce the 

influence of SMA, is required. As shown in this study, 

SMA during periodic human motion is also periodic. A 

new algorithm for posture estimation during periodic 

movements can take this fact into account, where SMA-

eliminated postures of the body segments and the SMAs 

might be better estimated simultaneously.  
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Figure 4: Estimated joint torques of the gait model. In 

each panel, solid and dashed curves are the joint 

torques for the left and right legs, respectively (from 

the top panel; hip, knee, and ankle). Black and red 

curves are the non-SMA affected and SMA-affected 

joint torques, respectively.  
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Abstract 

We designed real-time multi-channel bio-signal 
measurement system. Photoplethysmography 
(PPG), and body temperature signal are measured 
through wireless monitoring system based on 
Bluetooth Low Energy (BLE). The performance of 
proposed hardware is compared with reference 
devices (BIOPAC, Fluke). The experimental 
results of heart rate and temperature have 
respectively shown over 90% Reliability. 

Keywords : Photoplethysmography (PPG), 
Body temperature, Wireless 

1 Introduction 

Techniques of the data processing method, which 
measure and utilize users' bio-signals in their daily life, 
have been developed. At this time, mobile healthcare 
available to use the system for anytime and anywhere, 
based on the wearable device technology. The bio-
signal acquisition method used in most of the existing 
wearable device has a limitation of a motion artifact[1]. 
So we designed a non-invasive patch type wireless data 
measurement system which can reduce a motion artifact. 

2 Methods 

The system developed through in this study is 
composed of a sensor for measuring the bio-signal and 
the wireless communication for transmitting and 
receiving the data. TI Company's TMP007 was used for 
measuring the users' temperature. Also, the signals 
coming from the users' heart rate is through 
LED(530mm, 660mm, 940mm) by utilizing OSRAM 
Company's SFH7050[2]. Serial communications 
method was applied for controlling measured multiple 
signals by I2C(Inter Integrated Circuit) interface which 
utilizes two signals of SDA(Serial Data) and 
SCL(Serial Clock). We use Bluetooth 4.0 applied with 
Bluetooth Low Energy(BLE) for data communication 
and power consumption. Moreover, it was configured to 
obtain the data by including basic information such as 
Device Name, Mac Address and RSSI(Received signal 
strength indicator) to packets for minimizing the data's 
security and loss rate. 

3 Results 

For comparison of the measured data, 
BIOPAC(MP150) and BIOPAC(BN-TX) was used. We 
also designed a mobile application which can serving a 
real time data to user. Figure1 shows a raw data and 
App screen. 

(a) Raw data                (b) Measure data

Figure 1 : Measurement signal graph

4 Conclusions 

Accuracy of the heart rate is over 97% and the 
temperature is 91% by comparing with the references. 
Since the error is due to the field of view(FOV) and 
distance between the sensor and the surface. To solve 
this problem it need to redesign a circuit and sensor 
then we will improve reliability of the data. 

Acknowledgements 

This study is a result of research conducted by KI 
institution-specific project(N11160072) of 2016 
KAIST's own research projects.. 

References 

[1] Nemati, E.,  A wireless wearable ECG sensor for long-
term applications. IEEE Communications Magazine, 50(1),
36-43, 2012.

[2]Fang, Y.C. Tai, C.-C.,  Non-invasive multiwavelength
photoplethysmography under low partial pressure of oxygen .
Journal of Medical Engineering and Technology, 40(6), pp.
315-324, 2016

Address for correspondence: 

Name Surname : Chang Hojong 
Institution : KAIST 
email address : hojoungc@itc.kaist.ac.kr

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

217



Invited lecture 

Brain computer interfaces for the industrial application 
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Abstract 

Are the cognitive neuroscience ready to be used in advanced industrial contexts? In this presentation it will 
be depicted a possible path for the use of advanced findings in cognitive neuroscience by using the 
electroencephalogram not only in the medical environment (e.g. to improve the limb rehabilitation path for 
patients affected by stroke). In particular, applications of advanced EEG signal processing technique will be 
illustrated in the marketing context (neuromarketing) as well as in the aerospace-aeronautic environment, 
through the on-line monitoring of the mental workload of pilots, air traffic controllers and other category of 
professional drivers during their actual operations. Four main areas will be described: 
1) Brain Computer Interface. In this part of the talk different applications of the brain computer interfaces

(BCI) technology will be first presented. All the applications will be obtained by using the computerized
analysis of the electrical activity of the human brain, gathered by a net of electrodes placed on the scalp
surface (electroencephalogram, EEG). It will be described how by using the voluntary modulation of EEG
activity normal subjects could control external devices such as a cursor on the screen, a mobile robot as
well as a wheelchair. Successively, it will be illustrated how the BCI technology could be inserted within
the rehabilitation path of the patients suffered of brain strokes. In particular, it will be showed how BCI
technologies could enhance the rehabilitation exercise, by including the presentation of the attempt of the
movement as early as possible to the patients, although they were not yet able to move their limbs.
However, BCI applications could be extended beyond the use in the clinical context, and application in
the area of the synthetic telepathy are already investigated by DARPA and by the present research group.

2) Neuromarketing: Application of neuroscience in the evaluation of relevant marketing stimuli will be
described. The main cognitive neuroscience indicators for the appreciation of an audiovisual sensory
stimuli (e.g. a TV commercials) will be also described. The use of such EEG-based indicators in practical
situation will be also illustrated.

3) Online detection of mental workload: Successively, it will be showed different applications of the
collection of brain activity in working contexts related to the airplanes pilots. It will be described as it is
possible to detect the brain activity related to the insurgence of mental workload. It will be speculated that
such detection could be employed in a short future to generate devices able to warn the operators about
their perceived workload. Example of such detection of mental workload will be presented in three
different conditions: on civil airline pilots, on military pilots and on car drivers.

4) Neuroaestethic: The issue of how we perceive the beauty will be also addressed by the talk, through the
presentation of main results obtained by monitoring the EEG activity during the visit of two art galleries
with the pictures of Tiziano Vecellio and Jan Veermer.

Conclusions 
The possibility to detect in a reliable way the cerebral activity during "real-life" conditions and the possibility 

to detect brain activity with dry electrodes will be also discussed. Quoting the scientist Martha Farah, the 
issue is not "if" but "when" the neuroscience will shape our future. We are thinking that such time is arrived.
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Abstract 

Steady-state visual evoked potential (SSVEP) is 
widely used to design a brain-computer interface 
(BCI). To accomplish real-time BCI, that is, if user 
wants to enter the command at any time, it is 
necessary to extract user’s attentional behavior for 
visual stimulus. In addition, the wireless EEG 
system can improve the usability of communication 
support device used in daily life. In this study, we 
aim to improve the performance of SSVEP-based 
BCI by classifying user’s state into gazing or 
resting. Moreover, we compared the performances 
of two wireless EEG systems. As a result, the 
accuracy of 73.0 % was obtained by the wireless 
EEG systems. The number of harmonics that 
provided the best performance was different in two 
systems. 

Keywords EEG, Brain-Computer Interface, Steady-

State Visual Evoked Potential, Gaze, Wireless EEG 
System

1 Introduction 

Brain-computer interface (BCI) is a system that 

allows motor disabilities to communicate with the 

external world [1]. Among the various EEG signals, 

steady-state visual evoked potential (SSVEP) is one of 

the representative EEG responses used for BCI. The 

SSVEP response is evoked by flickering visual stimulus 

presented with high repetition rate of 3.5 - 75 Hz [2]. 

The response synchronized with fundamental frequency 

and harmonic components of visual stimulus is elicited 

in the visual cortex. The SSVEP-based BCI has 

advantages of less user training, and high information 

transfer rate [3]. 

In SSVEP-based BCI, user enters the command by 

gazing the visual stimulus represented on the display or 

LED panel. In the case of 2-class BCI, 2 kinds of visual 

stimuli with different frequencies are used. The user is 

instructed to gaze one of two stimuli. The user’s 

intention is classified using the detected EEG signals. 

However, to use as the real-time BCI which enables to 

enter the command at any time, it is necessary to detect 

the user’s intention by distinguishing the gaze from rest. 

Moreover, the wireless EEG system is superior to 

conventional wired EEG system in portability and ease 

of use. Therefore, the wireless EEG system can improve 

the usability in daily life. 

 In this study, we aim to improve the performance of 

SSVEP-based BCI by classifying user’s state into 

gazing or resting for visual stimulus. Furthermore, we 

compared the results of two wireless EEG systems. The 

first one was wearable wireless amplifier with pasted 

active electrodes (Miyuki Giken Polymate Mini AP108). 

The second was wireless EEG headset (Emotiv EPOC) 

without paste. To perform the 3-class classification of 2 

frequencies and rest, we employed the 2-step 

discrimination using feature vectors obtained from 

canonical correlation analysis (CCA) method.  

2 Methods 

2.1 Subjects 

Five healthy male subjects aged 21-23 years 

participated in the experiment. All subjects gave written 

informed consents before the experiment. This study 

was approved by the ethics committee of Niigata 

University. 

2.2 SSVEP-based BCI 

2-class BCI based on SSVEP was investigated in this

study. Fig. 1 shows visual stimulus used in the 

experiment. Two reversal check boards were presented 

on a 23-inch monitor display with a refresh rate of 60 

Hz. The distance between the monitor and the subject 

was 70 cm. The frequencies of the left and right 

stimulus were set to 4 Hz and 5 Hz, respectively.  

Fig. 2 shows the experimental protocol. The 

experiment was composed of the resting period and the 

gazing period. The duration of each period was 5 

seconds. In the resting period, the subject was instructed 

to focus on the fixation point at the center of monitor. 

In the gazing period, left or right arrow was presented at 

the center, and then subject focused on arrowed 

stimulus. The trigger for returning to rest was provided 

by an auditory instruction. 

Figure 1: Visual stimulus of 2-class SSVEP-based BCI. 
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The experiments were performed with two wireless 

EEG systems.  

Experiment A: wearable wireless amplifier (Miyuki 

Giken Polymate Mini AP108) is 8ch EEG system with 

a sampling rate of 500 Hz. To record the EEG signals, 

active electrodes were put on the scalp surface with 

paste. In this study, 6 electrodes (O1, O2, PO3, PO4, Oz, 

and POz) were placed in the occipital region according 

to the international 10-20 system. The reference 

electrodes were placed at A1 and A2. 

 Experiment B: Emotiv EPOC is a wireless EEG 

headset with a sampling rate of 128 Hz, and records the 

EEG signals with saline soaked felt pads. EPOC is 

equipped with 14 recording electrodes and 2 reference 

electrodes according to the international 10-20 system. 

In this study, 4 recording electrodes were placed over 

the visual cortex with rotating the headset by 180˚ in the 

horizontal plane [4]. 

Each stimulus was repeated 30 and 100 times in the 

experiment A and B, respectively. Considering the eye 

movements, data segments of 1 to 5 s after visual 

stimuli were used for analysis. The duration of time 

window that is considered for analysis was set to 1 to 4 

s with a step of 1 s. 

2.3 Classification 

At first, the acquired EEG signals were normalized to 

zero mean and unit variance. Subsequently, a bandpass 

filter between 3 to 20 Hz was applied to the signals.  

For feature extraction, CCA was applied to the 

normalized signals. CCA is a method for analyzing 

correlation between two multi-dimensional variables [5].  

CCA can detect the frequency of SSVEP data with high 

accuracy [6]. Given two sets of variables X and Y, CCA 

finds the weight vectors Wx and Wy such that the 

correlation between linear combinations (termed the 

canonical variables) x = XTWx and y = YTWy is 

maximized as 
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The maximum of correlation coefficient ρ with respect 

to Wx and Wy is the maximum canonical correlation. 

Here, X and Y refer to the multi-channel EEG signals 

and the reference signals, respectively. The reference 

signals Yf is set as 
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where f is the stimulus frequency, t is the time, and the 

Nh is the number of harmonics including a fundamental. 

In this study, Nh is set to 1 to 3. The ρ was calculated 

for each frequency, and 2 dimensional feature vector 

was obtained.  

To classify the subject’s state, 2-step discrimination 

was employed. In each discrimination, Fisher Linear 

Discrimination (FLD) was applied to feature vectors. 

Fig. 3 shows the flowchart of discrimination [7]. The 

class of 4 Hz and 5 Hz were separated easily. However, 

it was difficult to separate the resting class from 

combined class of 4 and 5 Hz. Therefore, firstly, feature 

vectors were discriminated between the class of 4 Hz 

and 5 Hz. Subsequently, feature vectors were 

discriminated whether they belonged to resting class. 

2.4 Evaluation 

At first, the variance ratio among in-class and inter-

class variance was calculated to evaluate the feature 

space. The variance ratio Jσ is given by 
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where σ2
W and σ2

B are the in-class and the inter-class 

variance, respectively and defined by following 

equations: 

   
 


L

i P

i

T

i

2

W

i
n

σ
1

1

P

mPmP ,         (4) 

   



L

i

i

T

ii

2

B n
n

σ
1

1
mmmm ,          (5) 

where Pi is the pattern sets in class i, P is the patterns, ni 

is the number of patterns, and mi is the mean value over 

class Pi. Furthermore, n is the number of all patterns, m 

is the mean value over all patterns, and L is number of 

Figure 2: Experimental protocol. The sequence shows 

the visual indication for the subject. 

Figure 3: Flowchart of 2-step discrimination. 
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Figure 4: Plots of  the correlation coefficients when 

changing the number of harmonics. 

fundamental 

2 harmonics 

3 harmonics 

(a) Experiment A (b) Experiment B 

classes. The larger Jσ, the better class separation. 

The leave-one-out cross-validation (LOOCV) was 

employed to evaluate the classification accuracy. In the 

LOOCV, one sample is removed from data sets for 

testing, and remaining data are used for training. All 

samples are used for testing once, and then the mean 

accuracy across all trials is calculated.  

3 Results  

Fig. 4 shows the plots of the correlation coefficients ρ 

in each number of harmonics. The x and y axes show 

the correlation coefficient between detected EEG signal 

and 4 Hz and 5 Hz reference signals, respectively. The 

blue, red and green spots show the correlation 

coefficient of 4 Hz, 5 Hz, and resting, respectively. The 

correlation coefficients considering 3 harmonics were 

higher than that considering 1 or 2 harmonics in both 

experiments. In the experiment A, three classes were 

separated by using only fundamental. On the other hand, 

in the experiment B, three classes were separated by 

considering 3 harmonics including fundamental. 

Table 1 shows the variance ratios Jσ when changing 

the number of harmonics. In the experiment A, Jσ 

tended to be low as number of harmonics increased. On 

the other hand, in the experiment B, the variance ratios 

Jσ tended to be large as number of harmonics increased.  

Fig. 5 shows the accuracy when changing the number 

of harmonics as a function of the time window length 

that is considered for the analysis. In the experiment A, 

the accuracy considering fundamental was higher than 

that considering 2 or 3 harmonics. By contrast, in the 

experiment B, the accuracy using 3 harmonics was 

higher than that considering fundamental or 2 

harmonics. As to the window length, the accuracy in 

case of long length was high in both experiments. In the 

case of the experiment A, the accuracy of 73.3 % was 

obtained with fundamental wave and the window length 

of 3s. In the experiment B, the accuracy was 73.0 % 

with 3 harmonics and the window length of 4s. 

4 Discussions 

The experimental results showed the different 

tendency between two experiments as to number of 

necessary harmonics for discrimination. In the 

experiment A, the class separation and the accuracy as 

only fundamental wave provided best performance.  On 

the other hand, the results of the experiment B as 3 

harmonics were better than others. It was considered 

that these results due to the signal to noise ratio (SNR) 

of measured EEG data. The SNR was calculated using 

the ratio of the power spectrum of the stimulus 

frequency to that of the neighboring frequencies. Six 

adjacent frequencies were used with frequency 

Figure 5: Accuracy when changing the time window 

length and number of harmonics. 

(b) Experiment B 

Number of harmonics  

Number of harmonics  

(a) Experiment A 

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

221



resolution of 0.25Hz. Especially, the averaged SNR of 

fundamental wave in the experiment A (1.97) was 

higher than that in the experiment B (0.56). While the 

averaged SNR of 3rd harmonic in the experiment A 

(1.07) was almost same as that in the experiment B 

(1.05). Since the SNR of the device used  in the 

experiment A is high, 2nd and 3rd harmonics included 

alpha band signal (8-13 Hz) that is not necessary for 

classification. By contrast, in the device used in the 

experiment B, it was necessary to add harmonics 

components because of the low SNR. Furthermore, the 

tendency was the same when changing the number of 

electrodes. 

5 Conclusions  

In order to accomplish real-time SSVEP-based BCI, 

the gazing and resting were classified using CCA. The 

accuracy of 73.0 % was obtained by using wireless 

EEG systems. Only fundamental wave was necessary 

for best performance in the wearable wireless amplifier 

with pasted active electrodes. On the other hand, 3 

harmonics including fundamental was required in the 

wireless EEG headset without paste. The future work is 

investigation of other stimulus frequency to improve the 

accuracy.  
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Table 1: The variance ratios Jσ when changing the number of harmonics. 

 (a) Experiment A 

(b) Experiment B 

 

Discrimination 4 Hz – 5 Hz  4 Hz – Resting  5 Hz – Resting 

Number of 

harmonics 
1 2 3  1 2 3  1 2 3 

1  0.60 0.84 0.84  0.18 0.25 0.27  0.28 0.39 0.37 

2  0.05 0.30 0.41  0.06 0.14 0.17  0.08 0.23 0.25 

3  2.23 2.30 2.10  0.85 1.52 0.98  1.57 0.77 0.77 

4  0.10 0.42 0.85  0.03 0.19 0.24  0.12 0.17 0.35 

5  0.17 0.55 0.79  0.15 0.34 0.41  0.04 0.20 0.31 

Mean  0.63 0.88 0.99  0.25 0.49 0.41  0.42 0.35 0.41 

 

 

Subject 

Discrimination 4 Hz – 5 Hz  4 Hz – Resting  5 Hz – Resting 

Number of 

harmonics 
1 2 3  1 2 3  1 2 3 

1  0.87 0.63 0.66  0.42 0.42 0.30  1.11 0.05 0.01 

2  0.72 0.72 0.69  0.61 0.66 0.25  0.94 0.30 0.23 

3  0.46 0.36 0.43  0.35 0.47 0.45  0.24 0.08 0.07 

4  0.31 0.19 0.17  0.17 0.17 0.11  0.33 0.01 0.01 

5  2.40 2.17 2.08  0.83 0.95 0.88  1.98 1.74 1.77 

Mean  0.95 0.81 0.80  0.48 0.53 0.40  0.92 0.44 0.42 
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Abstract 

A Brain-Computer Interface (BCI) enables users 
who cannot move their own body freely to operate 
machines. Recently, a system which is a 
combination of BCI and Augmented Reality (AR) 
has been proposed. This system can link real 
machines to augmented markers and realize an 
intuitive interface. In this study, we propose a 
mobile and multisensory AR-BCI (mmAR-BCI) 
system that can operate machines more smoothly, 
because not only visual stimuli but also auditory 
stimuli including position information are used to 
present the choices. We develop a wireless 
interface which capacitate users for operating 
wheelchair and electrical devices by using marker 
information both front and behind users. Also, we 
evaluate the effectiveness of mmAR-BCI system. 
The results show the possibility of the mmAR-BCI 
to operate the machines around the user smoothly 
and the appropriate stimulus presentation when 
using mmAR-BCI in many choices of machines. 

Keywords Brain-Computer Interface, Augmented 

Reality, P300, multisensory, auditory stimuli 

1 Introduction 

Brain-Computer Interface (BCI) is an interface which 

conveys command to devices by analyzing biological 

signals of the brain. This interface is expected to enable 

amyotrophic lateral sclerosis patients or severe paralysis 

patients to communicate others and to operate machines 

[1]. Most of the BCI use electroencephalogram (EEG) as 

input of biological signals. Event-related potential (ERP) 

which is shown as a reaction of thinking and cognitive is 

known as a typical EEG. P300, which is one of the ERP, 

has a positive peak voltage after about 300ms when 

stimuli are given. P300 has larger amplitude than other 

EEGs and appears as enough distinct reaction without 

training. So, many researchers use this signals such as a 

character input system called P300 Speller [2]. 

The above-mentioned BCI using P300 is necessary to 

assign the choices beforehand, so the BCI has a problem 

that it is only used in limited situations such as character 

input. To solve this problem, using Augmented Reality 

(AR) is conceivable. AR can add information to 

surrounding real environment. The general AR systems 

show the contents corresponding to the markers by 

recognizing image from two-dimensional code pattern 

such as AR markers. By utilizing AR-BCI system which 

is a combination of AR and BCI, users can receive 

information of the surrounding environment as stimuli.  

In previous study, there were AR-BCI systems using 

visual stimuli as choices of control device [3] [4]. 

Recently, a system that is named multisensory AR-BCI 

has been proposed. The multisensory AR-BCI 

administrated both visual and auditory stimuli to subjects 

[5]. However, conventional AR-BCI system including 

multisensory AR-BCI cannot be used for everyday-

situation such as wheelchair operation because the 

system is large and wired each other.  

Therefore, in this study, we propose a mobile and 

multisensory AR-BCI (mmAR-BCI) system that 

presents marker information as visual stimuli and/or 

three dimensional stereophonic sounds including 

position information. The proposed system employs a 

head-mounted display (HMD) and wireless speakers, 

and users can receive multisensory stimuli on the 

wheelchair. Users operate front machines by visual 

stimuli from HMD and rotate a wheelchair to the 

direction of behind machines by three dimensional sound 

stimuli. To evaluate the multisensory AR-BCI system, 

we measured (1) the rotation accuracy of a wheelchair, 

(2) discrimination accuracy of three dimensional

stereophonic sounds on the wheelchair, and (3)

feasibility of parallel task giving visual and auditory

stimuli simultaneously.

2 Methods 

2.1 Constitution of proposal system 

The proposal mobile and multisensory AR-BCI system 

consisted of two personal computers (PC), an EEG 

device (g.Nautilus, gtec medical engineering GmbH, 

Austria), a wheelchair (JWX-1, Yamaha Motor Co., Ltd, 

Japan), a head-mounted display (HMZ-T2, Sony 

Corporation, Japan), a USB camera (QcamR Orbit AF, 

Logicool, Japan),  a wireless IP camera (Ai-Ball, 

BRAVO.Co.,Ltd., Japan), four wireless speakers 

(VECLOS, THERMOS, Japan), and a stereophonic 

sound system (Xite-3D Pro, Digital Solutions Inc., 

Japan). Figure 1 (a) shows the front of multisensory AR-

BCI system and (b) shows the back of it. We assumed a 

virtual cube region whose length is 70 cm and user’s 

head is the center of the cube. Speakers were settled on 

apex of behind the cube so as to make plane on back of 
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user. A stereophonic sound system can add the position 

information like the same situation which each machine 

generates the sound by controlling the volume of four 

speakers. 

The wireless IP camera, which was mounted on a 

HMD, recognized the front marker information. The 

USB camera, which was mounted on a back of 

wheelchair, recognized the behind maker information.  

Figure 2 shows the procedure of the AR-BCI system. 

The system got the following marker information such as 

a class of markers (class ∊  {visual, auditory}), the 

number of markers, and a marker position from 

ARToolKit [6] by the cameras reading markers. The 

system presented users visual stimuli corresponding to 

the front markers and auditory stimuli added position 

information corresponding to the behind markers. The 

front markers presented choices of detailed machine 

operation, and the behind markers presented position 

information of extravisual machines. When users want to 

manipulate extravisual machines, they select the proper 

choice produced by sound stimuli, and the wheelchair is 

rotated to the direction of the target machines. When 

users operate the visible device, they can select detailed 

choices produced by flash stimuli.  

 
Fig.1: The mobile and multisensory AR-BCI. (a) is the 

front and (b) is behind the system. 

 
Fig.2: The procedure of the mobile and multisensory 

AR-BCI. The black broken arrows represent wireless 

transferring signals. Systems surrounded by the yellow 

square are movable together with the user. 

2.2 Experimental method 

To evaluate the mobile and multisensory AR-BCI 

system we measured (1) the rotation accuracy of a 

wheelchair, (2) discrimination accuracy of three 

dimensional stereophonic sounds on the wheelchair, and 

(3) feasibility of parallel task giving visual and auditory 

stimuli simultaneously. 

2.2.1 Evaluation of the rotation accuracy of the 

wheelchair 

The proposal multisensory AR-BCI system was able to 

operate behind machine by rotating a wheelchair to the 

direction of the machine. So, it is necessary for the 

wheelchair to face the selected marker.  

In this experiment, we performed rotating the 

wheelchair 10 times and evaluated the angel between the 

wheelchair and the marker. The camera on back of the 

wheelchair got marker position and PC calculated the 

rotation angle. Then the wheelchair was rotated 

depending on the marker position. After the rotation, the 

camera on the HMD recognized marker position again 

and wheelchair corrects the rotation angle. The 

correction of the angles using marker position was 

carried out until the angle between marker and the 

wheelchair was less than 3 degrees. 

2.2.2 Discrimination of presented position by 

three dimensional stereophonic sounds 

Using the wheelchair mounting stereophonic sound 

system was the original in this study. So, it was necessary 

to estimate the possibility of discriminating three 

dimensional sounds in state of sitting a wheelchair. Four 

or nine sound stimuli were given to subjects from the 

back of them using stereophonic sound system. Figure 3 

shows the location of the presented sound stimuli. Sound 

stimuli were single note of 1 kHz. Each stimulus was 

given 20 times. One trial was consisted 0.5 second of 

stimuli presentation and 1.5 second of rest. Stimulus 

presentation positions were settled randomly. Subjects 

were directed to press the key corresponding to the place 

of stimuli. Subjects were healthy 4 males (aged 23.25 ± 

0.43 years). 

2.2.3 Feasibility investigation of parallel task 

In the proposal multisensory AR-BCI, increasing of 

the number of choices led to decreasing of machine 

operation speed. To solve this problem, it was 

conceivable that users performed the choice of task by 

both visual stimuli and auditory stimuli in parallel. Then 

we carried out two types of experiment and compared 

both of them. One type of experiment was that both front 

choices by visual stimuli and behind choices by auditory 

stimuli were presented simultaneously. The other type of 

experiment was that both front and behind stimuli were 

presented respectively. The former was called parallel 

task, and the latter was called non-parallel task. 

Subjects were seated on a wheelchair and equipped 

EEG device and HMD. EEG data were measured from 

eight channel (Fz, Cz, P3, Pz, P4, PO7, Oz, PO8), and all 

channel ware referenced to right earlobe and grounded to 

AFz. 

Visual stimuli were given from HMD depending on 

four choices of a humidifier and auditory stimuli were 
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given from three dimensional stereo phonic sound 

system depending on assumed four choices. Figure 4 (a) 

shows the location of auditory stimuli, and Figure 4 (b) 

shows the screen of the HMD. A humidifier was placed 

50cm in front of the subjects. Sound stimuli were single 

note of 1 kHz. One trial was consisted 0.5 second of 

presenting stimuli and 0.5 second of rest, and stimuli 

from the choices of both visual and auditory stimuli were 

randomly presented. One type of experiment was 

constructed 8 times experiments. Participants were 

instructed to attend specified stimuli for each of the 

stimulus presentation point and to count the number of 

presenting specified stimuli in their mind. In the parallel 

task stimuli were given 50 times from each location in an 

experiment, and in the non-parallel task stimuli were 

given 25 times form each location in an experiment. So, 

the both of experimental times were equal. Subjects are 

healthy 4 males (aged 23.25 ± 0.43 years). 

In the parallel task, flash and sound stimuli were given 

simultaneously in one trial. However, the orders of flash 

stimuli and sound stimuli were different. Thus, we could 

divide choice which subject attended.  

 
Fig.3: Conceptual diagram of the point of presented 

sound stimuli. Sound positions are shown in presenting 

four stimuli (a), and nine stimuli (b). 

 
Fig.4: Conceptual diagram of presented stimuli. (a) is 

sound position, and (b) is the image that was presented 

to the subjects. 

2.3 Analytical method 

In this section, we explain analytical method of EEG 

signals and the derivation of accuracies. The EEG data 

amplified/digitized at a rate of 250 Hz and passed 

through an eight-order band-pass filter at between 0.5 Hz 

and 30 Hz. Data from the 25 samples before presented 

stimuli were used for baseline correction. We down-

sampled 250 samples data after stimuli to 25 samples. 

We projected down-sampled EEG data to one-

dimensional vector by Fisher's linear discriminant [7]. 

In this research, we divided learning data of reaction to a 

visual stimuli and auditory stimuli, and we discriminated 

the data separately visual stimuli and auditory stimuli. 

Discriminant function was different in the kind of stimuli, 

so we proposed the method of using probability density 

function. To get probability density function, we found 

Gaussian distribution approximation using maximum-

likelihood method with the value projected to one-

dimensional vector by Fisher's linear discriminant. This 

function enable us to derive the probability originated 

form target, and we can identify data using plural 

discriminant function. We shows the equation of 

proposal discriminant method (Eq. 1). N is the number of 

average, i is the number of stimuli, W is a projection 

vector, f(x) is a feature vector. We used leave-one-out 

cross validation and N = 5.  

𝑃𝑟𝑒𝑑𝑒𝑐𝑡𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡

= 𝑎𝑟𝑔 𝑚𝑎𝑥 [𝑃 (𝑇𝑎𝑟𝑔𝑒𝑡 |𝑊𝑐𝑙𝑎𝑠𝑠･(
∑ 𝑓(𝑥𝑖)𝑁

𝑖

𝑁
)) ] 

𝑇𝑎𝑟𝑔𝑒𝑡 ∈ {1,2,3,4}                                 (1) 

3 Results 

3.1  Evaluation of the rotation accuracy 

Figure 5 shows the result of experiment of rotating 

wheelchair. The wheelchair faced to the marker at the 

angle of 1.61±0.92 degrees.  

 
Fig.5: Angles between the wheelchair and the marker. 

Red point is average and red bar is standard deviation.  

3.2  Discrimination of the position of sounds 

Table 1 shows the results of discriminant of sounds. 

Distinction of four sounds was carried out in high 

percentage of correct answers. On the other hand, 

discriminant accuracy of nine sounds was low. From the 

above results, we should change kind of sound in the 

situation where sounds stimuli located more than three in 

vertical or horizontal. Moreover, distinct of vertical 

sound was the most of mistaken in both condition, so we 

need devise the presenting sounds such as changing the 

frequency in accordance with the height in the actual use. 

Table 1: Accuracy of discriminant of sounds. 

 

3.3  Feasibility of parallel task 

Figure 6 shows the averaged EEG waveform of 

subjects on Pz. In non-parallel task, ERP to attended 

flash stimuli had a higher positive peak at about 500 ms 

after presenting stimuli and a lower negative peak at 

about 700 ms after presenting stimuli than unattended 

flash stimuli, and ERP to attended sound stimuli had a 

Number of discrimination 4 stimuli 9 stimuli

Correct [%] 91.9 29.9

Mistake(Vertical) [%] 8.1 41.8

Mistake(horizontal) [%] 0.0 10.7

Mistake(diagonal) [%] 17.6
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higher peak at about 600 ms after presenting stimuli than 

unattended sound stimuli. In parallel task, ERP to 

attended flash stimuli had a lower negative peak at about 

700 ms after presenting stimuli than unattended flash 

stimuli, and ERP to attended sound stimuli had a higher 

positive peak at about 500 ms and 700 ms after 

presenting stimuli than unattended sound stimuli. The 

both of ERPs to sound stimuli were smaller than ERPs to 

flash stimuli. 

Figure 7 shows averaged accuracy of subjects. Chance 

level is 12.5 %. In parallel task accuracy of auditory 

stimuli was a little lower than in non-parallel task. On the 

other hand, accuracy of visual stimuli was mostly same 

in both of tasks.  

Figure 8 shows averaged bitrate of subjects. In parallel 

task bitrate of visual stimuli was higher than in non-

parallel task, and bitrate of auditory stimuli was mostly 

same in both of tasks. These results indicated feasibility 

and usability of parallel task. 

Accuracy and bitrate of sound stimuli were low in 

spite of the high-accuracy discrimination of sound 

positions (result of 3.2). Low performance of the 

auditory stimuli may be caused by the small amplitude 

of the auditory ERP in Fig. 6. To improve the accuracy 

and bitrate of the auditory stimuli, we can change the 

average number of ERP (N in Eq. 1) to the variable. And 

the system continues to present the stimuli until the 

probability of a target calculated by Eq.1 exceeding some 

criteria.  

In this experiment, we did only experiment under 

condition that a wheelchair does not move. We will 

investigate a risk of using HMD when driving wheelchair. 

4 Conclusions 

In this research, we consisted the mobile and 

multisensory AR-BCI (mmAR-BCI) system that can 

operate front machines and move wheelchair toward the 

behind machine. Moreover, we evaluated the accuracy of 

rotating wheelchair, the discrimination of the 

stereophonic sound, and the feasibility of parallel task. 

The results show the possibility of the mmAR-BCI to 

operate the machines around the user smoothly and the 

usability of parallel task when using mmAR-BCI in 

many choices of machines. 

 
Fig.6 Averaged EEG waveform of the subjects on Pz. 

(a) is the waveform in non-parallel task, and (b) is the 

waveform in parallel task. Black solid line is ERP 

waveform to attended flash stimuli. Black broken line is 

ERP waveform to attended sound stimuli. Gray lines are 

waveform to unattended each stimulus, respectively. 

 
Fig.7 Accuracy for each stimuli and methods.  

 
Fig.8 Bitrate for each stimuli and methods.  
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Abstract 

During myoelectric control, the time delay from 
the transition electromyography (EMG) signal to 
force output may influence the control experience 
and control accuracy. This paper researched the 
time response between cortical-muscular activity 
and actual output force during different sensorimo-
tor state transitions. Experimental results revealed 
the different time course of transitions with increas-
ing muscular contraction levels and decreasing 
muscular contraction levels. Both the inflection 
time points of force output and the reaction time of 
alpha rhythm EEG signals showed significant dif-
ference between increasing and decreasing transi-
tions, which indicates the necessity of different 
time compensation strategy and the possibility of 
employing EEG signals to shorten the predictive 
time from EMG to force output and improve predic-
tion accuracy of different transition types. 

Keywords Cortico-muscular Correlation, Electromech-
anical Delay, EEG 

1 Introduction 

EMG based control methods are widely used for ro-
bot control [1, 2]. For the EMG based control method, 
the time delay from the detecting of EMG signal to the 
executive end has tremendous influence on control sta-
bility and experience [3]. To establish a humanoid in-
teraction strategy, it’s essential to explore the time 
course of cortical muscular response during human 
hand control. A delay of 30~100ms existing between 
the onset of electrical activity and measurable tension 
has been found in 1950s [4]. Since then, Cavanagh et al. 
discovered the significant difference between the delay 
of isometric contractions and isotonic contractions [5].  
However, most of the researches focused on the delay 
during the onset of contraction, few researches focused 
on delays during other transitions between different 
contraction levels. 

On the other hand, when people conduct muscular 
contractions, relevant cortico-muscular synchronization 
was observed by Conway et al. [6]. After that, Kristeva-
Feige et al. researched the beta rhythm coherence dur-
ing isometric sustained contractions [7], while Mehrka-
noon et al. researched the alpha and gamma rhythm co-
herence when increasing contraction levels [8]. Besides, 

movement related cortical response was also found dur-
ing the preparation of movement [9] and after the onset 
of contraction [10]. 

This paper is to explore the time course of cortical-
muscular response during transitions between different 
contraction levels. 

2 Experimental Setup 

2.1 Experimental design 

During experimental trials, the subjects were asked to 
keep steady and pressing a force sensor by conducting 
isometric muscle contraction of index finger with target 
contraction levels. Experimental cues and required 
force levels were displayed through a cue displayer. 
Within each trial, the subjects were asked to complete 
the following 4 processes sequentially: 1) two seconds 
to prepare contraction level Target 1; 2) ten seconds to 
maintain contraction level Target 1; 3) ten seconds to 
maintain contraction level Target 2; 4) seven seconds to 
relax and prepare for next trial. The process of one ex-
perimental trial is shown in Fig. 1. During the experi-
ments, the displayer showed the cue of corresponding 
target contraction level during Process 1 to 3, while 
showing cross ‘+’ during Process 4. At the same time, a 
bar on the displayer showed the force level emerged by 
muscular contraction.  

2s 7s10s 10s

1 Target 1 Target 2 Interval

Figure 1: The process of one trial experiment (Process 1 for 
the preparation of Target 1). 

There were three different target contraction levels, 
resulting in six different transition experimental condi-
tions. Three target contraction levels and their display-
ing cues are as following: 

(1) Non-contraction: completely relax without con-
traction, with displaying cue as “0”; 

(2) Low level contraction: contraction to output force
within the range of 1.1~1.6N, approximately 20% of 
maximum voluntary contraction (MVC), with display-
ing cue as “L”; 

(3) High level contraction: contraction to output force
within the range of 5.2~6.0N, approximately 80% of 
maximum voluntary contraction (MVC), with display-
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ing cue as “H”. 
After assigning the three target contraction levels to 

the transition sequence, from Target 1 to Target 2, we 
get a total of six different transition conditions, as 
shown in Fig. 2. All the six transition conditions can be 
categorized into two classes, the incremental class and 
the decremental class. 

Contraction 
Level

0 L H

Transition 0L

Transition 0H

Transition LH

Transition L0

Transition H0

Transition HL

 
Figure 2: the target contraction levels and transition 

conditions (green for the incremental class, red for the 
decremental class) 

 
The experiment on one subject was divided into three 

sessions. Each session includes 30 trials, 5 trials for 
each transition condition. To avoid order effects, the or-
der of the trials in one session was pseudo randomized. 
Each session needs around 14.5 minutes. During the 
interval of sessions, the subjects could relax and move 
their limbs slightly. To avoid irrelevant muscular con-
tractions, the subjects were postulated to fit their hands 
on the desk and contact the pinch meter gently. 

2.2 Subjects and Recording 

The experiment was run with 4 healthy male subjects, 
noted as Subject S1~S4. They are right handed, at age 
24 ~ 27. All subjects participated with full knowledge 
of the content and the purpose of the experiment. The 
experiment was approved by the morality board of the 
University of Tokyo. 

 

Cue 
Displayer

EMG 
Electrode

Force 
Sensor

EMG
Reference

EEG 
Electrodes

EOG
Electrode

 
Figure 3: The layout of the devices 

 
To measure the cortico-muscular synchronization ac-

tivity, the EEG signals and EMG signals were recorded 
simultaneously. The layouts of the experimental devices 
are shown in Fig. 3. The EEG signals were recorded 
with 17 monopolar electrodes and a 32-channel ampli-
fier (band pass filter 2-60Hz, notch filter 50Hz, sam-
pling rate 256Hz, g.USBamp, gtec, Austria). As illus-
trated in Fig. 4, the electrodes were placed over the sen-
sorimotor cortex (FC3, FC1, FCz, FC2, FC4, C5, C3, 
C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4) accord-

ing to international 10-20 system. To reduce the artifact 
of electrooculogram, another channel of the amplifier 
was used to record the electrooculogram. The EMG was 
recorded with one bipolar electrode (band pass filter 
20~460Hz, sampling rate 1024Hz, SX230-1000, Bio-
metrics, UK) over the flexor digitorum superficialis of 
the dominant hand. The output force was measured by a 
pinch meter (P200, Biometrics, UK) with the sampling 
rate of 1024Hz.  

 

 
Figure 4: The layout of the EEG electrodes based on 
international 10-20 system (white electrodes for EEG 
recoding, black electrode as the ground of the A/D con-
verter, grey electrode as the reference). 

3 Methodology  

3.1 Processing of Force and EMG signals 

To improve the accuracy of the determination of time 
point, the force signal was fitted to a logistic function 
after low pass filtered by a 20-order zero phase finite 
impulse filter (FIR). The fitting function was as follow-
ing, 

1 exp[ ( )]

A
Y I

R t 
 

  
 ,                   (1) 

Where A corresponds to the amplitude of the transi-
tion, I corresponds to the initial value before the transi-

tion, τcorresponds to the time point with maximum 
changing rate and R corresponds to the general chang-
ing rate of the curve.  

 

0 t

Y

t =τ 

I

A

R >0 R <0 

 
Figure 5: Parameters of logistic function fitting 

 
To compare the time course of different transition 

conditions, we choose the parameter τas the inflection 
time point, and the parameter d=4ln3/|R| to describe the 
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duration of the transition, which equals the time elaps-
ing from I+0.1A to I+0.9A or the inverse way. 

Similar to the processing of force signal, the root 
mean square (RMS) feature of EMG signal was also 
fitted to the logistic function. Before fitting, the EMG 
signal was filtered by a 50Hz zero phase notch filter. 
For the data series s(i), i=1,2,…l in the one-second long 
segment, the RMS of the data was computed as: 

2

1

1
( )

l

i

RMS s i
l 

                               (2) 

3.2 Processing of EEG signals 

To remove the artifact of electrooculogram, inde-
pendent component analysis (ICA) was employed [11]. 
To get the event related change of EEG signals, we 
mainly focus on the alpha rhythm change. Instantaneous 
alpha amplitude was normalized after enveloping. The 
normalized alpha (Na) amplitude is as following 

( )
( )

Ref

Ref

e t e
Na t

e


                              (3) 

Setting the time when the cue of the target changed as 
t=0 in one trial, where e(t) is the enveloping value of 
alpha rhythm, eRef is the mean value of e(t) from -2s to 
0. The time point of the largest peak from 0 to +3s of 
Na(t) is recorded as the reaction time of EEG signals. 

Fig. 5 shows the typical trial data after processing. 
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Figure 6: Typical trial data after processing 

4 Results and Discussions 

The inflection time points of the transitions of EMG 
signals are shown in Fig. 7. The bars in the figures cor-
respond to mean values of the subjects, while the error 

lines correspond to standard deviation values. The ‘av-
erage’ items correspond to mean values and standard 
deviation values ignoring the combinations of Target 1 
and Target 2. Based on the inflection time points of the 
transitions of EMG signals, we computed the relative 
time from EMG time points and to force time points 
and EEG peaks, positive values corresponding to force 
time points and EEG peaks after EMG time points and 
negative values corresponding to force time points and 
EEG peaks before EMG time points. Similar to Fig. 7, 
we drew Fig. 8 and Fig. 9 to illustrate the relative time. 
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Figure 7: EMG inflection time point after cue 
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Figure 8: Relative time of force inflection time point to 

EMG inflection time point  
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Figure 9: Relative time of EEG peak time point to EMG 

inflection time point 
Repeated measures ANOVA were conducted to verify 

whether different target combinations (0↔L, 0↔H and L

↔H) have influence on the time indices within same 
signal source and same changing direction (increasing 
and decreasing) or not. Results showed no significant 
influence. And then we saw the target combination dif-
ference as a repeated factor like subject difference, and 
conducted repeated measures ANOVA to verify whether 
signal sources and changing directions have influence 
on the time indices or not. Results showed significant 
influence (p<0.001). Then post-hoc multiple compari-
sons were conducted to get the pair-wise comparing re-
sults. Specifically, there was no significant difference 
between increasing and decreasing EMG time points. 
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There was significant differences between increasing 
and decreasing force time points (137ms, p<0.001), and 
increasing and decreasing EEG peaks (-512ms, 
p=0.038).  

The durations of force and EMG transitions are 
shown in Fig. 10 and Fig. 11. Paired wise comparing 
changing directions, durations of increasing force tran-
sitions were 211ms longer (p<0.001) than decreasing 
force transitions while there was no significant differ-
ence between increasing and decreasing EMG transi-
tions.  
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Figure 10: Duration time of force transitions 
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Figure 11: Duration time of EMG transitions 

 
Although we divided the transitions into six classes, 

the major difference were revealed between transitions 
with increasing contraction level and transitions with 
decreasing contraction level. The subjects could not re-
sponse to the cue transition immediately but with a time 
delay. When the delay appears in EMG transitions, it 
was around 900ms. The force and EEG peaks are asyn-
chronous to EMG signals and show significant differ-
ence between different transition directions. During in-
creasing transitions, the asynchronization was 147ms 
later for force but 215ms earlier for EEG peak. During 
decreasing transitions, the asynchronization was almost 
zero for force but 296ms later for EEG peak. The varia-
tion along transition types indicates the possibility of 
employing EEG signals to check and modify the predic-
tive model of myoelectric controllers.  

The future work is to explore the possibility of em-
ploying EEG signals to shorten the predictive time from 
EMG to force output and improve prediction accuracy 
of different transition types. 

 

5 Conclusions 

This paper researched the time response between cor-
tical-muscular activity and actual output force during 
different sensorimotor state transitions. Experimental 

results revealed the different time course of transitions 
with increasing muscular contraction levels and de-
creasing muscular contraction levels. Acquired time de-
lay data could be used for better myoelectric control in 
the future. 
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Abstract 

Advances in the biomedical signal interpretation 
allow using cerebral signals to assess important 
cognitive functions in humans, such as the 
cerebral workload. In fact, the increase in the 
frontal EEG power spectrum in the theta band and 
the simultaneous decrease in the parietal EEG 
power spectrum in the alpha band have been 
employed in several studies to estimate the mental 
workload index (IWL). In the present study, the 
IWL was employed to identify the most appropriate 
cochlear implant processor among Freedom, 
CP810 and CP910 (Cochlear Ltd) during a word in 
noise recognition task. Furthermore, in 
correspondence of the use of each of the three 
processors two conditions of noise filtering have 
been also investigated. The CP910 was the 
processor inducing the lower IWL among the 
tested ones. Additionally, the trials in which the 
Noise filter reduction function was adopted 
reported the subject’s lower IWL values. Results 
support the capability of identifying the device 
eliciting less workload level. Such devices would 
make available user’s cognitive resources for  
additional tasks. The application of the biomedical 
signal interpretation open the way in a strict future 
to a new use of cerebral signals to evaluate the 
impact of several sensors and prosthetic devices. 

Keywords EEG, Theta & Alpha band, Listening effort. 

1 Introduction 

Nowadays, we are assisting to continuous improving 

in performances reported by cochlear implant (CI) 

users. This observation is tightly related to 

technological developments and clinical rehabilitation 

advancements occurring in these years. However, 

scientific evidences show how fitting CI for optimal 

speech perception does not necessarily optimize, that is 

reduce, listening effort. Listening effort level in fact 

may change between CI processing conditions for 

which speech intelligibility remains constant [1]. 

Listening effort has been defined as the proportion of 

limited cognitive resources engaged in interpreting the 

incoming auditory signal, so the presence of noise or 

distortions in a speech signal thus increases cognitive 

demand and listening effort [2]. 

Neurophysiological measures have been already 

employed for assisting the clinical evaluation of hearing 

impaired subjects in CI candidates [3], CI users [4] and 

tinnitus [5,6,7]. Generally, the criteria for the choice of 

the most suitable device is based on subjective 

measures, but the mental workload level could be 

estimated through: a) performance evaluation, b) 

subjective questionnaire and c) physiological 

measurement. The third modality differentiates from the 

others since, directly estimated from the 

electroencephalographic (EEG) signal, it could provide 

more objective information [8]. Furthermore, the choice 

of the most appropriate CI fitting is guided by subject’s 

and by clinicians’ evaluations and speech intelligibility 

scores. Speech intelligibility tasks and questionnaires 

(NASA TLX) were not able to reveal improvements in 

task execution, despite reaction times measures detected 

improvement linked to device’s spectral resolution 

increase [1]. Several studies support the EEG spectra 

modulation corresponding to the variation of the mental 

workload and to the allocation of mental effort [e.g. 9], 

and in particular in relation to studies on pilots [10]. At 

the increase in the frontal EEG power spectra in the 

theta band (4-7 Hz) and the simultaneous decrease in 

the parietal EEG power spectra in the alpha band (8-12 

Hz) a mental workload increase occurs, known as index 

of workload (IWL) [8]. Speech in noise recognition 

produce higher effort and/or stress in hearing impaired 

subjects in comparison to normal hearing (NH) listeners 

[11,12,13]. In a recent study, IWL levels have been 

measured during a forced choice word recognition task 

in CI children, with the aim of investigating the reaction 

to different noise conditions [14]. Authors reported a 

modulation of the IWL in the phase preceding the 

listening of the word (an IWL increase during the 

subjects’ most challenging noise condition) and in the 

phase before the word recognition execution (a possible 

IWL burnout during the same noise condition). A 

further step from the investigation “environmental 

challenging features”, such as different noise 

conditions, is the “device challenging features”, that is 

if different versions of cochlear implant devices elicit 

different measurable levels of mental workload. With 

this aim, in the present study it has been designed to 
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investigate three processors versions have been 

commercializing from 2005 to 2013 by the same 

company (Cochlear Ltd), so to maintain the same 

quality standard. To summarize, objective of the present 

study is to address the following questions: “What 

cerebral effort is the subject experiencing during the 

listening, beyond his performances?” and ”Is there a 

way to objectively identify the best device choice for 

each subject despite behavioral performances?”. 

2 Methods 

The subject was a 43 years old male unilateral CI 

user, postlingually deaf (probably genetic etiology), 

implanted at 35 years old in his right side and not aided 

in his left ear. He was asked to performed a word 

recognition with and without background babble noise. 

The selected disyllabic words were taken from a clinical 

standardized set (Audiometria Vocale. Cutugno, 

Prosser, Turrini). The experimental conditions were: 

“No Noise”(NN), with the subject hearing words 

stimuli in quiet; “Noise without filter reduction” 

(NwoF) and Noise with filter reduction” (NF). All the 

auditory experimental conditions were tested using 3 

different kind of processors: Freedom, CP810 and 

CP910 by Cochlear. The signal to noise ratio (SNR) 

was +5 in all the experimental conditions and the 

intensity for the stimuli delivery was 65dB. The NN 

condition was used only to verify the participant’s 

starting level of words comprehension so, reaching the 

95% it will not be discussed anymore in the article. 

The processors included in the testing were all produced 

by the same company (Cochlear Italia, Bologna, Italy): 

1. Freedom (2005): it uses one omni-directional 

microphone and a dual post directional microphone. 

Both microphone systems help the recipient achieve 

enhanced directionality in front of them. Two of the 

Freedom’s optional functions have been tested in the 

present work: i) “Beam” allows to focus on the sounds 

coming from the direction in which the subject is 

looking, using a dynamic directionality (e.g. when 

talking with someone in a crowd); ii) “ADRO” is the 

normal default directionality response. 

2. CP810 (2009): presenting speech processing 

programs with optional functions, among which ADRO 

(as Freedom) and “Zoom”, both tested in the present 

study. Zoom provides fixed directionality in front of the 

subject. CP810 uses two omni-directional microphones; 

the output from the second microphone is electronically 

delayed and subtracted from the first microphone output 

to provide directionality. 

3. CP910 (2013): it presents an improved dual-

system microphone in comparison to the CP810, and a 

completely automatic processing of the sounds. Also 

CP910 ADRO function has been tested, along as the 

“Background Noise Reduction” (SNR-NR). The SNR-

NR works by statistically analyzing the incoming signal 

(irrespective of direction) and estimating the 

instantaneous SNR of the sound. It assesses the 

listening environment and detects the background noise 

level in each frequency channel. It then estimates the 

SNR in each channel for each analysis frame. The 

channels with poor SNRs indicative of background 

noise are attenuated, whereas channels with positive 

SNRs, typically dominated by speech, are retained [15]. 

Since it has been shown that hearing-aid-like noise 

reduction strategies can improve performances on a 

secondary task, even when no improvement in speech 

intelligibility is seen [16], a hearing device feature, such 

as noise reduction, although maybe not relevant when 

assessed by an intelligibility test, may instead be 

beneficial leading to a reduction in listening effort. Due 

to the suggested influence of the background noise on 

the listening effort of CI recipients, two filters features 

conditions were tested: 1) No noise filter reduction use, 

that is the use of ADRO alone; 2) Noise filter reduction 

use, in other words the use of Beam, Zoom and SNR-

NR for the Freedom, CP810 and CP910 respectively. 

Consistently in the experimental conditions noise and 

words stimuli were delivered form 1 front and 1 back 

loudspeakers, positioned 0° and +180° in relation to the 

subject. During the trials including the background 

noise it was emitted continuously. Each experimental 

condition comprised 20 trials (20 words), each trial 

lasted up to 8 seconds, varying in length depending on 

the subject’s response time. During the task the subject 

listened to a word and then was instructed to verbally 

say only the just heard word.  

Subject was sitting on a comfortable chair in a 

shielded room. A digital ambulatory monitoring system 

(Bemicro EBNeuro, Italy) was used for the EEG 

recording. Electrodes were wet and placed according to 

the international 10-20 system (Fp1,Fp2, 

F7,F8,F3,F4,Fz,T3,T4,C3,C4,Cz,P7,P8,P3,P4,Pz,O1,O2

). Signals were acquired with a sampling frequency of 

256 Hz. The EEG recording was filtered with a band 

pass filter (2-30 Hz) and then the Independent 

Component Analysis (ICA) was used to manually 

remove artifacts and blink component from the traces 

by an experienced researcher. Successively EEG 

recordings were segmented into epochs of 1 second 

each, shifted of 0.25 seconds. The Power Spectrum 

Density (PSD) was calculated for each epoch and 

channels, observing the EEG PSD values in theta (4-8 

Hz) and alpha (8-12 Hz) bands. The index of workload 

(IWL) was defined as the ratio between the averaged 

EEG PSD in theta band over the central frontal area 

(F7,F8,F3,F4,Fz) and the average value of EEG PSD in 

alpha band over the central parietal area 

(P7,P8,P3,P4,Pz)  as in the following formula:[9] 

IWL = PSD(θF) / PSD(αP)                                (1) 

The IWL values were analyzed by the repeated 

measures Analysis of Variance (ANOVA) in order to 

compare the different: kinds of processor (Freedom, 

CP810 and CP910) and the different noise filter 

conditions of the devices (No noise filter reduction and 

Noise filter reduction) during the task.  

3 Results 

Behavioral results were based on the number of 

words correctly identified within each trial by the 
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subject. Even without reporting a statistical significance 

(ANOVA F(5,95)=1.341 p=0.254) a higher percentage 

of correct responses was obtained in the Noise filter 

reduction application in comparison to the No noise 

filter reduction condition (Fig.1). In particular, the best 

score was obtained for both the Noise filter reduction 

and the No noise filter reduction during the CP910 

sound processor use. 

 

 

Figure 1: Behavioral scores reported in the comparison 

among different processors varying the filter modality 

(without and with noise filter reduction). 

The comparison between the IWL values obtained 

during the testing of the three different kinds of sound 

processor (Freedom, CP810 and CP910) showed a 

statistical significant difference (F(2,180) = 3,046 

p=0.05), with the lower value reported in the CP910 

trial and the higher value in the Freedom trial (Fig.2). 

Considering the filters features (Fig.3), the trials in 

which the Noise filter reduction function was adopted 

reported statistically significantly lower IWL values in 

comparison to the trials with No noise filter reduction 

use (F(1,90) = 8,027 p = 0,006).  

4. Discussion 

The selected sound processors have been already 

compared in literature on the basis of traditional clinical 

outcomes: such as speech perception tests. Data showed 

a significant improvement when using Nucleus 6 

(CP910) in comparison to Nucleus 5 (CP810) in adults 

[17] and children, but circumscribed at the speech in 

noise perception test [18]. The neurometric approach to 

the listening effort in CI users has been approached by 

EEG studies using event related potentials (ERP), 

reporting a correlation between N2/N4 latencies and 

rated listening effort [19]. Furthermore, beyond the 

effort level rating, the above mentioned research by 

Cartocci et al. [14] showed an increase of IWL values 

in cochlear implanted children when tested in the most 

demanding noise condition for them. The results 

presented in this article shift the focus of the listening 

effort from the environment-related effort to the device-

related listening effort. With regards to the IWL values 

obtained by the experimental subject while adopting 

each of the different sound processors, it has been 

attained the lower workload level in correspondence of 

the use of the CP910 use. 

 

Figure 2: Workload index values reported in the 

comparison between processor types in a cochlear 

implant recipient. 

 

Figure 3: Workload index values reported in the 

comparison between the Noise filter reduction and the 

No noise filter reduction condition (p<0.01). 

The present results are in accord to a very recent 

study  investigating the workload levels induced by an 

auditory forced choice word recognition task in adult 

unilateral cochlear implant users [20]. Authors found 

evidence of a statistical significance of the interaction 

between kinds of processors and noise filter reduction 

use, with a trend of lower IWL values in 

correspondence of the use of the CP910 processors. 

Some authors hypothesize that Noise Reduction (NR) 

features in hearing devices reduce listening effort and 

frees up cognitive resources for other tasks [16]. Hafter 

and Schlauch [21] proposed that NR algorithms in the 

processor do not improve speech reception thresholds 

(SRTs) because performing a function similar to that of 

the listeners’ auditory and cognitive systems. However 

the same authors suggested that the NR, substituting 

these physiological functions, may lighten listeners’ 

cognitive load. Therefore, NR might not affect the SRT 

but may release attentional resources to be used for 

other, simultaneous tasks. This reduction in cognitive 

load could be important in natural settings, where 

multitasking is the norm and cognitive demands are 

greater. The concept of identifying devices allowing to 

save cognitive resources appears extremely worthy for 

facing everyday challenging situations such as noisy 

environments for cochlear implanted subjects (Fig.2). 

This observation acquires clear evidence just thinking 

for example at the requirements for the sustained 
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attention that children have to generate during their 

learning processes in the early scholar period of their 

life. Preschoolers and school-aged children with CI 

present  2 to 5 times greater risk of clinically significant 

deficits in comparison to NH children, for instance in 

the areas of comprehension and conceptual learning and 

attention [22].Finally, despite the obvious limitation of 

the single case nature of the present study, data suggest 

the applicability and usefulness of mental workload 

estimation for the choice of the most proper biomedical 

device in patients. 

4 Conclusions  

The objective of this study was twofold: 1) “What 

cerebral effort is the subject experiencing during the 

listening, beyond his performances?” Results suggest 

that although behavioral results didn’t show marked 

differences among processors, especially when the 

Noise filter reduction function was activated, EEG 

results showed a statistical significant difference among 

IWL values connected to the different processors 

employment. 2) ”Is there a way to objectively identify 

the best device choice for each subject despite 

behavioral performances?” Results highlight that the 

application of the biomedical signal interpretation, open 

the way to an approach of measuring useful parameters 

for the best device choice; in this scenario the devices 

inducing the lower IWL values seem to be preferable 

because potentially making available cognitive 

resources for additional demands.  
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Abstract

Auditory attention detection (AAD) holds promis-
ing potential for usage in auditory-assistive devices.
Being able to train subjects in achieving high AAD
performance would increase the application poten-
tial of AAD. This requires an acceptable temporal
resolution and the analysis should take place online.
In the current study, we implemented a fully auto-
mated closed-loop system that allows for convenient
recording outside a lab environment. We achieved
high AAD accuracies with a trial length of 10 sec-
onds and provided subjects with visual feedback on
their ongoing performance. This exploratory study
proves the feasibility of investigating the effect of
neurofeedback in such a setting, paving the way for
future studies.

Keywords Auditory Attention Detection, Mobile EEG,
Neurofeedback

1 Introduction

In the past few years, electroencephalography (EEG)
has been employed for auditory attention detection
(AAD). A pretrained decoder that makes a linear com-
bination of the EEG and delayed versions of it allows to
extract a signal with a significantly higher correlation to
the attended speaker’s envelope as compared to the unat-
tended speaker’s envelope [1]. In dual-speaker scenarios,
the subject’s attention to a specific speaker could be reli-
ably detected with high accuracy in research labs [2, 3, 4].
In addition, several analysis and preprocessing steps have
been evaluated to optimize the estimation made by the
decoder [5]. The accuracy was found to be dependent
on the considered trial length for calculating the decoder
and correlations [1, 4]. The temporal resolution of the
attention tracking is dependent on the trial length and
can therefore be seen as a trade-off between accuracy and
temporal resolution. For applications in real-time, shorter
trial lengths such as 10s are preferred over the most re-
ported 60s trial length, for example. Online analysis of
the attended audio source holds potential for use in assis-
tive audiological devices, such as hearing aids [3, 4] (e.g.
to steer a beamformer to the attended speaker).

The effectivity of EEG-based AAD depends, not only
on the temporal resolution and differences in speech (i.e.

bilabial sounds), but also on the responses of the test sub-
jects themselves. Large differences in accuracy between
subjects were observed in the aforementioned studies. It
is known for other cognitive paradigms (e.g. such as P300
oddball studies) that subjects’ physiological responses
can differ substantially, even within subjects when mov-
ing from restricted to more real-life scenarios [6]. Provid-
ing feedback about the ongoing EEG signals was shown
to be beneficial for other EEG paradigms to strengthen
the brain responses (e.g., motor imagery [7]). A simi-
lar reasoning can be applied for AAD, i.e. training users
to elicit stronger brain responses related to the attended
speech stream might increase the accuracy. To this end
users might experience positive effects from such a neu-
rofeedback training to increase the performance of EEG-
based AAD.

In the current study, we explore the application of the
AAD in real time. The subjects were recorded in an office
environment with mobile EEG hardware and consumer-
grade headphones. This is more convenient for the sub-
jects compared to a lab environment. In addition, we
apply a neurofeedback scenario to provide a proof-of-
concept for a fully automated closed loop system. We
implemented an online AAD analysis with a time reso-
lution of 10 seconds. Half of the subjects received vi-
sual feedback about their AAD accuracy per time point.
We show competitive results compared to existing studies
with offline analyses which paves the way to investigate
the effect of long term neurofeedback in future studies
(e.g. at subjects’ home).

2 Methods

2.1 Participants

Twelve native Dutch-speaking subjects (mean age
(SD) 22.4 (±2.1) years, six women) participated in the
current experiment. Subjects reported normal hearing
and no past or present neurological or psychiatric con-
ditions. All participants signed informed consent forms
prior to participation. The ethics committee of the KU
Leuven approved the experimental setup.

2.2 Data Acquisition

The acquisition was conducted with a SMARTING
mobile EEG amplifier from mBrainTrain (Belgrade, Ser-
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bia, www.mbraintrain.com). This amplifier comprises a
wireless EEG system running on a notebook computer
using a small 24-channel amplifier with similar charac-
teristics to a stationary laboratory amplifier (<1uV peak
to peak noise; 500Hz sampling rate). The EEG was mea-
sured using 24 Ag/AgCl passive scalp electrodes (Easy-
cap), placed according to the 10-20 standard system with
positions: FP1, FP2, Fz, F7, F8, FC1, FC2, Cz, C3, C4,
T7, T8, CPz, CP1, CP2, CP5, CP6, TP9, TP10, Pz, P3,
P4, O1 and O2. Impedances were kept below 10 kOhm
and an abrasive electrolyte gel was applied to each elec-
trode. EEG data were recorded through Openvibe (and
stored for offline (reference) analysis) and streamed from
Openvibe to Matlab via the labstreaminglayer interface
(LSL). The audio stories were played via Openvibe and
pre-loaded into Matlab for the online analysis part and
synced via the Openvibe audio triggers. Every ten sec-
onds, the data was retrieved from the LSL stream and
analyzed in Matlab. Both online and offline analysis used
custom-made Matlab scripts.

2.3 Stimuli and Procedure

Audio stimuli consisted of four stories in Dutch (of ap-
proximately 13 minutes length), narrated by four differ-
ent male speakers. Silences were truncated to 500ms and
each story was divided into two parts, resulting in 8 ses-
sions of ±6.5 minutes in length. Subjects listened to two
stories presented simultaneously through low-cost con-
sumer headphones (Sennheizer mx475). The two audio
streams were filtered by head-related transfer functions
leading to more realistic perception [2]. Subjects were
asked to pay attention to only one story on the left or
right side. Afterwards, multiple-choice questions were
presented and subjects indicated the difficulty in listen-
ing (i.e., indicated on a ten-point scale) and answering
some questions about the story. After listening to one
full story (2 x 6.5 minutes), subjects switched attention to
the opposite side (i.e. left or right speaker). The experi-
mental setup consisted of two blocks of two stories each.
The first half of the recordings (24 minutes) were used
for estimating the decoder, the latter for evaluation. Half
of the subjects received visual feedback (feedback group)
on the laptop screen for the second part of the experiment,
whereas the other subjects received no feedback (control
group). Order effects were avoided by alternating the lis-
tening sides among subjects.

2.4 Preprocessing and Analysis

EEG data were bandpass-filtered at 1-8 Hz and con-
sequently down-sampled to 20Hz for each 10s segment
of data. The absolute value of the audio waveforms with
power-law compression with exponential 0.6 was taken
to obtain the audio envelopes, and then an 8Hz low-pass
filter was applied [5]. Envelopes were extracted from
the clean audio signals for the separate speakers. Offline
analysis was done on trial lengths up to 60s, in steps of
10s. Real-time analysis was done on trial lengths of 10s.

The decoder-construction approach followed similar

steps as presented in previous publications [1,3]. In short,
seven time-shifted versions of the EEG trial were ob-
tained in a 0-300ms range after stimulus onset. All EEG
channels and their 7 delayed versions are then linearly
combined using a pre-trained linear decoder w. During
training, the decoder is optimized such that the resulting
output signal has a minimal mean squared error (MMSE)
with the attended speech envelope. Thie linear MMSE
decoder w can be computed as w = R−1c, where R is
the covariance matrix over all the EEG channels, and c
the cross-correlation vector between the EEG channels
and the attended speech envelope [2]. All the Rs and cs
computed over the training trials were averaged to create
a single average covariance matrix and cross-correlation
vector [5]. For each test trial Pearson’s correlation co-
efficient is employed to quantify the decoders’ recon-
structed envelope to the attended stimulus (CA) and unat-
tended stimulus (CUA). The highest correlation value de-
termines to which of the two speakers the subject was
listening at the current trial. The decoders were trained
following an (offline) leave-one-trial-out structure on all
data. The decoders for the second half of the experiment
were computed solely on the training data of the first half
of the experiment.

The subjects who received feedback were presented
with a colored circle in the center of the screen. After
every test trial of ten seconds, the colored circle indicated
the performance of the past ten seconds. Four different
colors were used for performance indication: Dark red,
light red, light green and dark green. Thresholds deter-
mining the colors were based on the training set in such
a way that the CA and CUA difference would be equally
divided for the correct and incorrect trials. Note that tri-
als with a larger CA as compared to CUA (i.e., correct
trials) are always green and the incorrect trials are always
red. Decoders for analyzing the second half of the dataset
were based on the individual training data.

3 Results

3.1 All sessions

Grand average classification accuracy for the 10s win-
dow was 81.9% (SD =5.9%). Increasing the window
length in the offline analyses raised the accuracy up to
96.9% (SD=3.5%). Figure 1 displays single-subject and
grand-average accuracies at different trial lengths. All
subjects scored above chance level (>55% at 10s up to
>62% at 60s) for all window lengths.

Stable performance was achieved up to removal of
16 channels that contributed the least in the envelope-
reconstruction model performance. With a reduced set
of 8 channels, an accuracy of 78.8% (SD = 6.5%) was
achieved. If we maintained only seven or fewer elec-
trodes, the performance dropped significantly. This is
depicted in Figure 2. To evaluate the most discrimina-
tive and most redundant channels, we plotted the aver-
age number of removal per channel, down to 8 chan-
nels. This is illustrated by the left topoplot in Figure 2.
The red/yellow colors depict the channels that were re-
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Figure 1: Grand average and subject specific decoding accura-
cies for different window lengths.

moved without having a large influence on general accu-
racy. It can be noted that especially the frontal and pos-
terior channels contributed the least to the decoders per-
formance. In contrast, the temporal electrodes (around
the ear) are most important, as is depicted by the yellow
colors in the right topoplot.

Figure 2: Grand average and subject specific decoding accu-
racies depending on the number of electrodes for the 10s win-
dow length. The channel with the lowest decoder weight (after
correction for channel variance differences) is removed in each
iteration. Topoplots represent the average distribution for the
least discriminative channels on the left and most discrimina-
tive on the right. The shaded area indicates the chance level.

3.2 Neurofeedback

Average online classification accuracy in the online de-
coding of the second half of the data was 79.7% (SD =
7.0%) using the pre-trained decoder. When evaluating
the offline leave-one-out decoder, average accuracy was
83.0% (SD = 7.5%). This increase in accuracy was signif-
icant (t11=-4.1 p<0.01), indicating that additional train-
ing data resulted in an increase at the 10s windows. In
contrast, this difference was not significant for 60s trial
length; both types of decoders achieved equal accuracies:

96.2% and 96.9% for the pre-trained and leave-one-out
decoder, respectively.

Comparing the accuracy within the feedback group be-
tween the feedback session and the training session re-
vealed a slightly higher accuracy in the feedback session,
+4,1 percentage points as calculated with the leave-one-
out decoder when averaged over all subjects in the feed-
back group. Five out of six subjects scored higher in the
feedback session, compared to the training session. For
the group not receiving feedback, the difference between
the second session and the training session was -0.2 per-
centage points. No effect was found for increased or de-
creased CA or CUA changes in the feedback group with
respect to the training session.

Relative occurrence of the four feedback cues was
41.8% dark green, 40.7% light green, 10.1% light red
and 8.7% dark red. We evaluated the temporal patterns
at which the cues were evident between the feedback and
the hypothetical feedback cues on the training set (i.e.,
calculated offline with similar thresholds as the feedback
session; subjects did not see this feedback.). Entries in
Figure 3 indicate, by the colors the relative frequency at
which a colorcue in the rows was followed by the color-
cues in the columns. It can be noted that, in the feedback
session, participants shifted more frequently to dark red
after seeing light red. For the training sessions, subjects
seem to have less often two consecutive light red trials
but more often from light green to light red. Note that the
difference in threshold between the light colors is smaller,
compared to the dark colors. For example, light green de-
notes a correct decoding, but with less conficence than in
the case of dark green.

Figure 3: Adjacency matrices for the Training and Neurofeed-
back session. The entry color indicates the normalized frequen-
cies of a specific color cue (in the rows) that is followed by any
other cue (columns). Cues: DG = Dark Green, LG = Light
Green, LR = Light Red and DR = Dark Red.

3.3 User Metrics

On average, subjects answered 84.2% (SD = 7.9%) of
the questions correctly. We contrasted the number of cor-
rect responses of each subject to the general accuracy at
the 10s window analysis. This revealed a strong positive
correlation (r = 0.72, p <0.05). One subject was removed,
as its number of correct responses differed more than 2
standard deviations from the mean. Figure 4A displays
the individual subjects’ accuracy and number of correct
responses. A regression line has been added for illus-
trational purposes. A moderate negative correlation (r

Proceedings of the 8th International Workshop on Biosignal Interpretation (BSI2016)

237



= -0.56, p = 0.059) was found between the average ac-
curacy and the subjects’ reported difficulty in answering
the questions and overall listening. This correlation is de-
picted in Figure 4B.

Figure 4: Scatterplots illustrating the correlation between the
decoder grand-average accuracy and the number of correct re-
sponses after each story in A and the User indicated task dif-
ficulty in B. A regression line has been added for illustrational
purposes.

4 Conclusion and Discussion

In the current study, we evaluated the possibility of im-
plementing an online closed-loop system for auditory at-
tention detection. With window lengths of 10s, we ob-
tained robust accuracies that, even with a low number of
electrodes, are predictive. We provided a fully working
feedback system, and the online implementation did not
significantly degrade the results. Although a slight im-
provement in accuracy was observed when using neu-
rofeedback, the effects are not attributed much signifi-
cance due to the limited number of measurements. Over-
all the results were similar and competitive to existing
lab-studies. This is particularly interesting for future ap-
plication in long term studies in real-life conditions such
as the subjects’ home.

The high accuracies in the present work were obtained
with 24 electrodes and were found to be stable up to re-
moval of 16 channels. These results are in line with in-
sights presented by [4] and are encouraging for future
work in online processing. The neurofeedback results
show no clear negative deflection in accuracy due to in-
creased distraction. Nevertheless, subjects who saw light-
red feedback were more prone to perform bad in the next
trial as well. One explanation may be that when subjects
became aware of an error (i.e. shift from green trial to
light-red) this leads to a brief surprise effect which low-
ers the attentional response in the next 10 seconds. In
general we conclude that future studies with an increased
number of subjects and longitudinal measurements might
demonstrate positive effects on the AAD that would be
highly valuable for future users of auditory-assistive de-
vices.

A limitation in the current study is the lack of incorpo-
rating real-life audio signals. Recently there have been
studies evaluating the effect of noisy reference signals
and showing a negative impact on performance [3, 8]
In addition, real-life scenarios involve frequent switch-
ing of attention. This factor is not well reflected in the

current paradigm; subjects only switched attention after
each story. To this end, it would be interesting to see how
a state-space model would perform, as this was shown to
have a high temporal resolution [9].
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Abstract

The level of attention to cognitive tasks is related
to the performance and is therefore likely to also
influence the classification accuracy in EEG (audi-
tory) paradigms. Alpha band oscillations (8-12 Hz)
in EEG are known to be related to attention and
can be quantified through spectral analysis. How-
ever, on the channel level, these oscillations are
mixed with other brain activity and spatial patterns
may vary across tasks. To this end we aim to sep-
arate ongoing alpha, theta (4-8 Hz) and low-beta
(13-16 Hz) waves in a data driven way and relate
it to classifier outcome as obtained by the widely
used regularized LDA from a previously recorded
outdoor mobile auditory oddball study. The three ex-
perimental conditions varied in degree of cognitive
load and physical effort. We extract the aforemen-
tioned frequency band activity at the single trial level
by Canonical Polyadic Decompositon of wavelet-
transformed EEG data. Meaningful correlations of
the alpha and low-beta-band activity with respect to
the subject classification accuracy were found in the
two most complex conditions and relate to power
band calculations with existing techniques that re-
quire electrode selection.

Keywords Canonical Polyadic Decomposition, Oscil-
latory patterns, Mobile EEG

1 Introduction

Recently, mobile EEG has been utilized to investigate
attentional paradigms in outdoor conditions (e.g. [1, 2])
Significant differences in task related P300 Event Related
Potential (ERP) were identified in real-life ambulatory
conditions, as compared to a restricted setup. The influ-
ence on the P300 waveform of head and muscle artifacts
that arose from being in a fully realistic outdoor biking
scenario was found to be minor in previous work [2].
The latter study provided evidence that increased cogni-
tive load in real-life environments is likely to decrease the
P300 ERP, which was similar to the thoughts of [1]. Al-
pha power was found to be diminished in the free biking
condition, which may be related to increased attentional
demands.

Alpha band activity has been linked to various ele-
ments of attentional processing [3]. Low beta compo-
nents were found to affect attentional processing, as evi-
dent through biofeedback training [4]. Theta oscillations
were shown to relate to mismatch-negativity responses in
MEG data [5]. Being in more demanding scenarios leads
to alterations in brain patterns due to automatic (motor)
tasks or stronger distractions. For example, significant
changes in alpha and beta activation were linked to in-
creasing levels of engagement in virtual reality scenarios
[6]. Similar differences might emerge in alpha and beta
band characteristics when contrasting real-life recording
situations, such as biking outdoors, to more stationary
recording environments. Monitoring the alpha and close-
by theta and low beta band oscillations on a single-trial
basis might reveal additional condition or task-specific
effects that are overlooked by the standard analysis which
merely focuses on classifier construction and P300 wave-
form properties [2].

In the current study, we explore the effect of theta (4-8
Hz), alpha (8-12 Hz) and low beta (12-16 Hz) oscilla-
tions on classification accuracy as obtained by a widely
used regularized Linear Discriminative Analysis (rLDA)
classifier. This method was applied to the data from [2],
which features three different outdoor mobile recording
conditions while the subjects performed a three-class-
auditory oddball task. One condition was a completely
free ride in an open outdoor environment and can be seen
as completely unconstrained.

Canonical Polyadic Decomposition (CPD) is a pow-
erful, data-driven method for extracting ongoing os-
cillations. CPD was shown to extract relevant alpha
sources on a single-trial basis [7]. Decomposing wavelet-
transformed EEG data (i.e. Morlet) with CPD, we are
able to derive data-driven estimates of the aforemen-
tioned oscillations assuming they are present. Each com-
ponent in the CPD can be characterized by an individual
frequency, space and time signature and is classified as
theta, alpha and low beta band source if their spectral sig-
nature corresponds to the respective frequency bands. In
addition, given the nature of CPD, it is possible to remove
selected sources. To this end we not only investigate the
magnitude of these specific oscillatory components, but
also separate them to obtain cleaned EEG datasets.

All in all, we derived meaningful estimates of the
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amount of alpha and low beta activity which correlate to
the classification accuracy at subject level, without the
need for selecting appropriate channels.

2 Methods

2.1 Initial Analysis

The data used in the current study is obtained from
[2]. To summarize, fifteen subjects (mean age (SD):
27.1 (±2.5)) participated in the trial and performed a
three-class auditory oddball task. The ethics commit-
tee of the KU Leuven approved the experimental setup.
The acquisition was conducted with a SMARTING mo-
bile EEG amplifier from mBrainTrain (Belgrade, Serbia,
www.mbraintrain.com) with 24 Ag/AgCl passive scalp
electrodes (Easycap). Extended Infomax ICA was used
to remove EOG activity, and then muscle activity was re-
moved through BSS-CCA. All EEG was band-pass fil-
tered ([0.5-20] Hz). After re-referencing offline, the EEG
trials consisted of 22 channels and 500 time-points [-200
to 800ms] with zero being the stimulus onset. In addition,
data were down-sampled to 40 Hz. Three different out-
door recording conditions with increasing level of cogni-
tive load were measured. One condition involved sitting
completely still on a fixed bike (Still). The second con-
dition involved sitting on the fixed bike while pedaling
at a comfortable pace (Pedal). The third involved biking
freely around the perimeter (Move). During all sessions,
the subjects had to attend the target tone and ignore all
other tones and (natural) distractions. For the classifica-
tion procedure, we followed the approach explained in
[2]. Classification accuracies were obtained through reg-
ularized LDA based on five-fold cross validation. The
average rLDA accuracies for the three conditions were:
77.5%, 72.3% and 66.2% for the Still, Pedal and Move
conditions, respectively. Two subjects were excluded, as
the accuracy was not above chance level for the Move
condition (i.e. <55%). Per trial, a continuous wavelet de-
composition was applied (i.e. Morlet) with correspond-
ing scales in the 1-16 Hz interval.

2.2 Canonical Polyadic Decomposition

Multidimensional signals can be decomposed by the
CPD as a sum of rank-1 terms. For the three-dimensional
case, the CPD will decompose a tensor X as follows:

X =
R∑

r=1

ar ◦ br ◦ cr + ε (1)

The number of the components is represented by R, the
signatures of all atoms in every mode are represented by
ar, br, and cr, and ε represents the error of the model.
Every mode has an individual signature which repre-
sents the extracted component characterized; in the three-
dimensional tensor, which represents the ERP as a struc-
ture of channel × time × frequency, cr would provide the
frequency signature, br the time courses, and ar would
contain the various atoms’ spatial distribution. The CPD
model operates on a trilinear basis, i.e. the vectors of

each mode are proportional to one another within a com-
ponent of rank-1. In general terms, when the data follows
a structure of rank R, unique decomposition occurs up to
permutation and scaling of the extracted components. We
computed CPD with the NLS (nonlinear least squares) al-
gorithm in Tensorlab toolbox 3.0, which is available pub-
licly. For an overview of the application of tensor models
in biomedical signal analysis, we refer the reader to [8].

2.3 Extracting oscillatory components

Low beta 12-16 Hz, alpha 8-12 Hz and theta 4-8 Hz
bands were considered in the CPD decomposition and the
corresponding CWT scales were used for the decompo-
sition resulting in a 22 channels × 40 timepoints × 17
frequency scales tensor. Rank R was set to 3, as this was
shown to be adequate in previous work [7]. The models
were randomly initialized and repeated several times to
investigate significant differences in output. There were
no significant differences, which suggests that the CPD
extracted components are stable.

To quantify and select appropriate oscillatory compo-
nents, we detected the peak in each component’s spectral
mode and categorized it as theta, alpha or low beta if the
index was in one of the corresponding frequency bands.
With R=3 CPD will extract 3 components which together
explain the most possible variance of the signal. There-
fore, if the brain oscillation of interest have low power,
it is possible that one or more of the frequency bands of
interest are not represented in the components. Figure 1a
illustrates a derived single-trial component of subject 1,
and the spatial, temporal and spectral modes are depicted
from top to bottom, respectively. The source was cate-
gorized as an alpha band source, as is evident from the
spectral mode. This process was repeated for all trials to
obtain, per subject and condition, a number of trials that
were categorized into at least one of the three frequency
bands. This was in turn correlated to the subject average
accuracies as obtained with rLDA.

2.4 Removing selected components

Besides detection, we also reconstruct the frequency
band-specific information from the CPD component by
multiplying the temporal and spectral mode and scaling it
by the channel weight in the decomposition. This process
generates per channel a matrix that estimates the source’s
contribution for a given trial. The result was subtracted
from the original wavelet transformed data and an inverse
wavelet transform was applied consecutively to obtain
cleaned channel × time data in which the selected com-
ponent is removed. An example of removing the alpha
source from Fig. 1A has been illustrated in Fig. 1B.

2.5 Validation

To validate the data-driven CPD estimates, the fre-
quency estimation process was repeated manually by cal-
culating the normalized band power (based on power
spectral density) on three different spatial locations to
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Figure 1: A) A single alpha component of the CPD model of subject 1. From top to bottom, the spatial, temporal and spectral modes
are depicted. B) Example of the single-trial EEG data from (a) and the reconstructed alpha patterns by back-reconstructing the CPD
component and applying an inverse wavelet transform on the filtered time-frequency matrix provides the cleaned EEG trial.

capture frontal, central and posterior oscillations at chan-
nels Fz, Cz and O1 respectively. Removal of these oscil-
lations was achieved by applying a stop-band FIR filter
on the selected frequency band on all channels. This will
be referred to as the reference method.

3 Results

3.1 Subject-level

A theta band component was detected in nearly all tri-
als: 93.9% in the Still condition, 94.0% in the Pedal con-
dition, and 94.2% in the Move condition. For the alpha
band, 74.0%, 72.2% and 70% of the trials were identi-
fied to have at least one alpha band component for the
Still, Pedal and Move conditions, respectively. Com-
pared to the Pedal (8.7%) and Still (8.5%) conditions we
saw an increase in low-beta band quantity in the Move
condition, 13.5%. Correlating the subject-average num-
ber of alpha trials to the classification accuracy revealed
a marginally significant negative correlation (r= -0.51, p
= 0.07) in the Pedal condition. Similarly, the low-beta
activity correlated marginally with the Pedal condition
accuracies as well (r= -0.51, p = 0.08). In addition, a
significant correlation was found between the low-beta
and rLDA accuracies in the Move condition (r= -0.65, p
<0.05). These correlations and median spatial plots of
the CPD extracted components are illustrated in figure 2.
The theta band did not correlate (p >0.1) with the rLDA
accuracies in any condition. For this reason, results of the
theta band and still condition are omitted in the figures,
for brevity. Interestingly, no significant correlations be-
tween the reference power band estimations on the poste-
rior channel with either band were found. The frontal and
central channel estimation of low-beta in the Move con-
dition as extracted by the reference method correlated in
similar fashion to the rLDA accuracy as the CPD results
(r= -0.72, p <0.05) and (r= -0.74, p <0.01) respectively.
Significant correlation of the reference power bands and

the Pedal condition were absent, only similar (negative)
trends can be noted.

Figure 2: Scatterplots and correlations between the number of
trials noted as alpha (top) or low-beta (bottom) by the CPD
and the average accuracy. Each data point represents a single
subject. The lines are best fit (Least-squares) to the data points
and are for illustrative purposes only. The topoplots represent
the median spatial mode of the extracted components.

3.2 Removal at Single-Trial level

Finally, we removed the selected oscillatory CPD com-
ponents per trial from the alpha and low-beta band as
these correlated with the average rLDA accuracy. Table
1 represents the grand average classification accuracies
for the reference rLDA and for the removal of alpha or
low-beta activity on the indicated trials. The accuracy in
the move condition improved significantly after removal
of the alpha activity (t12=2.65, p <0.05). This increase
in accuracy was evident for 10 of the 13 subjects. In the
other conditions no significant changes can be noted. Ap-
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plying the reference stopband filter on the alpha and low-
beta bands resulted in similar effects on the classification
accuracy as the CPD correction; in the Move condition a
slightly higher accuracy was evident (t12=2.21,p <0.05).

Table 1: Average classification accuracies in the Still, Pedal
and Move conditions for the regular data (Reference), with re-
moval of alpha activity and low-beta as extracted by the CPD.
Significant differences (p <0.05) with respect to the reference
are indicated with an asterix.

Still Pedal Move

Initial Accuracy 77.5% 72.3% 66.2%
Alpha Removal 76.9% 72.7% 68.3% *

Low-beta Removal 77.0% 72.4% 66.3%

4 Conclusion and Discussion

We identified meaningful correlations with respect to
single-subject performance on the auditory oddball task
in the alpha and low-beta band for the Pedal and Move
conditions. The extracted theta band activity did not cor-
relate with the classifier performance. Similar results
were obtained with existing band power estimation tech-
niques, although the latter requires appropriate selection
of spatial location and was less predictive of user rLDA
performance in the Pedal condition. This illustrates that
the frequency components that were extracted in a data
driven way by CPD were meaningful and can be applied
in an automated fashion. In addition, removal of the ex-
tracted alpha oscillatory activity increased the grand aver-
age accuracy in the Move condition. Finally, in all condi-
tions we illustrated that we did not remove discriminative
information related to the task.

CPD estimates components’ spatial, temporal and
spectral characteristics based on the patterns in the data
tensor. This way, relevant electrodes that convey simi-
lar spectral activity are clustered in a single component.
Calculating frequency power on the original [channel ×
time × frequency] tensor requires selection of (a) spe-
cific channel(s). For example, posterior channels did not
seem to capture predictive alpha and low-beta oscillations
whereas the more central and frontal CPD extracted pat-
terns did (Fig. 2). Correcting for the alpha activity in-
creased the classification accuracy in the Move condition.
This indicates that the alpha activity, or at least part of it,
had a negative effect on the task-related ERP signal. This
is a surprising finding, as the alpha power was shown to
be low in the Move condition compared to the others [2].

Deriving spectral features that correlate with classifier
performance might be a promising addition for evaluating
subject differences or tuning classifier characteristics. On
a single-trial level, similar derivations have been made in
phase-locking value which has been reported to provide
valuable information of stimulus-locked oscillations that
in turn influence the ERPs of interest [9, 10].

Finally, an extension of the CPD model to a Block
Term Decomposition (BTD) might allow for better ex-
traction of the spatio-spectral signatures in our model
[11]. A BTD can allow two or more modes to be of higher

rank, allowing more variation to be modeled. In the cur-
rent framework, BTD might be able to capture shifts in
phase of the various oscillations over electrodes.

To conclude, the presented work provides exploratory
results on the effect of theta, alpha and low-beta os-
cillations on the classifier performance, contrasting the
results between three different outdoor mobile-recorded
datasets. Especially in unconstrained or physically en-
gaging scenarios, evaluating these patterns in a data-
driven way can provide valuable information on predicted
classifier performance.
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Abstract 

Time-Variant Autoregressive Models (TVAM) 
can be used to deal with the non-stationarities of 
electroencephalographic (EEG) signals induced by 
the performance of cognitive and motor tasks. The 
model coefficients matrix update on a sample-by-
sample basis allows evaluating changes in time of 
the quantitative indices that describe the 
directional relationships between different EEG 
channels. However, these indices are commonly 
assessed within a fixed frequency range, which 
does not guarantee that the total power of the 
brain rhythms under investigation is considered 
during the performance of the whole task. Here we 
analyzed EEG data acquired on healthy subjects 
performing a motor task (i.e., visually guided cue-
paced pointing movement). We exploited the time-
variant coefficients matrix, as obtained by a 
bivariate TVAM, to define a time-variant frequency 
band associated to the sensorimotor mu rhythm 
from the knowledge of the model poles position in 
each time instant. The directional interactions 
between different brain regions (i.e., premotor, 
motor and posterior parietal cortices) were 
assessed within these time-variant frequency 
bands. The contralateral motor cortex was the 
source of the information flow towards the other 
areas. The premotor cortex was enrolled after the 
motor cortex and was found to lead the posterior 
parietal cortex within a fronto-parietal network. 

Keywords EEG, model poles, Time-Variant 

Autoregressive Model (TVAM) 

1 Introduction 

Changes in the brain activity due to the performance 

of cognitive and motor tasks can be assessed with an 

optimal time resolution using electroencephalographic 

signals (EEG) [1]. 

In the context of multichannel EEG recordings, 

directional relationships between different scalp 

channels can be investigated using multivariate 

autoregressive models. Specifically, quantitative indices 

obtained from the model coefficient matrix can be used 

to describe the directional information flow within the 

frequency domain [2]. As these indices are derived 

from autoregressive models, they require the signals 

stationarity in the time interval to be analyzed. 

However, the stationarity requirement is generally not 

fulfilled when brain activity modifications are evaluated 

during the performance of cognitive and/or motor tasks 

[1, 3]. To bypass the stationarity requirement, Time-

Variant Autoregressive Models (TVAM) allows 

estimating the model coefficients on a sample-by-

sample basis using a Recursive Least Square (RLS) 

algorithm with an exponential forgetting factor [4–6]. 

The time-variant coefficient matrix can be easily 

exploited for the computation of quantitative indices 

that describe directional relationships between different 

scalp channels. These quantitative indices are generally 

evaluated within time-invariant frequency bands. In 

other words, the index values belonging to a fixed 

frequency range are averaged together for each time 

instant. However, it is known from the literature [3] that 

the frequency of certain brain rhythms is modulated in 

time by cognitive and sensorimotor processes. 

Therefore, the index averaging within fixed frequency 

bands does not guarantee to consider the total power of 

the brain rhythm under investigation during the 

performance of the whole task. 

In this work we exploit the time-variant coefficients 

matrix, as obtained by a bivariate TVAM, to identify 

the position of the model poles in each time instant. The 

knowledge of the time course of the model poles 

position is used to define time-variant frequency bands 

associated to the brain rhythms of interest. We provide 

an application of this method to EEG data acquired on 

healthy subjects during the execution of a motor task 

(i.e., visually guided cue-paced pointing movement). 

We quantify the existence of directional interactions 

between different couples of EEG channels through the 

Normalized Directed Transfer Function (NDTF) [2]. 

We evaluate this quantitative index within the time-

variant frequency band defined from the model poles 

associated to the sensorimotor mu rhythm. 

2 Methods 

A) Bivariate Time-Variant Autoregressive Model

A bivariate TVAM [7, 8] of order p can be described

by the following matrix form: 





p

k

t tWktYkAtY
1

)()()()( , (1) 

with Y(t)=[y1(t) y2(t)]’ and W(t)=[w1(t) w2(t)]’. The 

signals y1(t) and y2(t) represent the output of the 

bivariate model, while w1(t) and w2(t) are white 

Gaussian noises with zero mean and variance σ1 and σ2 

respectively. At each time instant t, the model 

properties are completely described by the coefficients 

matrix At = [At(1) At(2) … At(p)]. At is updated on a 

sample-by-sample basis using the RLS identification 

algorithm with an exponential forgetting factor Λ. The 
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update in time of the model coefficients matrix allows 

tracking and following in time the changing properties 

of the signals under investigation. The RLS algorithm is 

described by the following equations: 
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According to equation (2) the coefficients matrix at 

time t is updated by summing the coefficients values 

computed at the previous step (i.e., t-1) with an 

innovation term, which is the product between the 

prediction errors vector E(t) and the time-variant gain of 

the model K(t). P(t) is the covariance matrix of data, 

while 𝛷(t) represents the observation vector containing 

the previous p samples of both signals y1 and y2. The 

prediction errors vector E(t) for the two signals is 

obtained by computing the difference between the 

actual samples Y(t) and their prediction provided by the 

model 𝛷(t)’At.  

The model poles can be identified at each time instant 

t by computing the roots of the determinant of (I-A(z)), 

where I is the identity matrix and A(z) is the transfer 

function of the bivariate model evaluated at time t [9]. 

B) Dataset and task description 

In this work we analyzed a subset of EEG recordings 

belonging to a dataset collected for a previous study 

[10]. In particular, we used data acquired on 7 right-

handed healthy subjects (5 males and 2 females; 23.6 ± 

3.0 years). Subjects were comfortably seated in front of 

a touch-screen monitor, with their right arm resting on a 

table. The experimental protocol was made up of 60 

repetitions (trials) of a motor task, which was a cue-

paced visually guided pointing movement to be 

executed with the right upper limb. The protocol was 

conceived for the investigation of both movement 

planning and execution phases. Each trial began with 

the appearance on the monitor of a round cross-shaped 

sign (CUE stimulus). In this phase of the task the 

subject was asked to consciously plan the pointing 

movement. The subject had to stare at the CUE stimulus 

until a full circle (TARGET stimulus) appeared in the 

same position. The subject was instructed to touch the 

TARGET center as quickly and accurately as possible 

(movement execution phase), and to return in the 

starting position. After each movement execution the 

subject received a visual feedback about his/her 

performance. A more detailed description of the 

protocol can be found in [10].   

C) Data recording and pre-processing 

EEG signals were recorded by means of a Sam32 

amplifier (MICROMED, Mogliano Veneto, Italy). 19 

Ag/AgCl surface electrodes were placed on the scalp 

according to the 10-20 International System with linked 

earlobes reference. The ground electrode had a mid-

forehead placement. The impedance of each electrode 

was kept below 5 KΩ. EEG signals were sampled at 

1024 Hz. 

All data were exported in MATLAB (Mathworks, 

Natick, MA) environment and offline pre-processed 

using EEGLAB toolbox [11] and custom scripts. EEG 

signals were band-pass filtered in the range 0.5 – 45 Hz 

(finite impulse response filter of order 3000) and down-

sampled at 128 Hz. Segments of signals with 

pronounced non-stereotyped artifacts were removed 

based on visual inspection. Stereotyped artifacts (e.g. 

eye blinks, eye movements, cardiac activity and scalp 

muscles contraction) were removed using independent 

component analysis. Clean EEG signals underwent 

surface Laplacian transformation, yielding the estimate 

of Current Sources Density (CSD). This spatial filtering 

was performed in order to improve the spatial 

localization of neuronal activity and to obtain reference-

free data. CSD data were used for all subsequent 

analyses. 

D) Data analysis with the bivariate TVAM 

The bivariate TVAM analysis was restricted to the 

electrodes couples F3-C3, C3-P3, F3-P3, C3-C4 since 

the corresponding brain areas have been shown to be 

involved in visually guided cue-paced pointing 

movements [12–14]. For each subject and couple of 

electrodes, the bivariate model was applied to the 

continuous CSD signals. The optimal model order was 

identified through the multivariate Akaike Information 

Criterion, yielding the value p = 9. Trial averaging was 

performed in the model coefficients domain. In this 

respect, we identified 8-s-long epochs (1 s before and 7 

s after each CUE event) containing the different phases 

of the motor task: baseline, movement planning phase, 

movement execution phase and post-movement 

interval. The model coefficients matrix was averaged 

over the afore-defined epochs. 

For each subject we identified a time-variant 

frequency band associated to the mu rhythm by tracking 

the model poles position in each time instant belonging 

to the 8-s-long epoch (Fig. 1). Since we found two poles 

associated to the mu rhythm (i.e., pμ1 and pμ2), the lower 

and upper bounds of the time-variant frequency band 

were defined as [pμ1 – 2; pμ2 + 2] Hz. 
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Figure 1: time-variant frequency band associated to the 

mu rhythm. 

The average coefficients matrix was used to estimate 

the NDTF for each time instant belonging to the 8-s-

long epoch. This index, which can assume values 

between 0 and 1, quantifies the information flow 
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directed from channel j to channel i at a certain 

frequency, as described by the following equations: 
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where A  is the average coefficients matrix and H 

represents the transfer matrix of the model.  

For each couple of electrodes and time instant t, we 

computed the following quantitative feature: 

)()()( 2

21

2

12 tNDTFtNDTFtNDTF   ,  (8) 

where 1 and 2 represent the first and the second 

electrode of the couple, while NDTF2(t) is the average 

of the NDTF values in the time-variant frequency band 

for each time instant. The information flow is directed 

from the first to the second electrode if ΔNDTF<0, 

while the opposite happens if ΔNDTF>0. Then, we 

subdivided the time course of ΔNDTF into 0.5-s-long 

consecutive and non-overlapping time windows. We 

used the sign test to statistically evaluate, separately for 

each window, the existence of a preferential direction of 

the information flow between channels, with the null 

hypothesis H0 representing the absence of a preferential 

directionality. The significance level of the statistical 

test was fixed to 5%. 

3 Results 

Table 1 reports the percentage of subjects showing a 

statistically significant preferential direction of the 

information flow between electrodes in the different 

periods of the motor task. 

 

 
BS Plan Ex PM 

F3->C3 38 31 37 30 

C3->F3 62 69 63 70 

C3->C4 22 71 62 31 

C4->C3 78 29 38 69 

C3->P3 64 58 79 68 

P3->C3 36 42 21 32 

F3->P3 62 71 63 40 

P3->F3 38 29 37 60 

Table 1: percentage of subjects showing a statistically 

significant preferential direction of the information flow 

between the different couples of electrodes. BS = 

baseline; Plan = planning; Ex = execution; PM = Post-

Movement. 

The subdivision of the 8-s-long epoch into the 0.5-s-

long time windows used for the statistical analysis is 

schematically represented in Fig. 2A.  

As shown in Fig. 2B, a significant information flow 

was directed from the contralateral frontal area (i.e., F3 

electrode) to the contralateral central area (i.e., C3 

electrode) during the whole motor task. With respect to 

the interaction between the contralateral central and 

parietal areas (i.e. C3 and P3 electrodes respectively), 

we observed a significant information flow directed 

from C3 to P3 electrode. A significant information flow 

was directed from electrode F3 to P3 during the 

baseline and during both the movement planning and 

execution phases. A switch in the directionality of the 

information flow was instead observed during the post-

movement interval. 

During the baseline period and during the post-

movement interval the information flow was directed 

from the ipsilateral central area (i.e., C4 electrode) to 

the contralateral central area (i.e., C3 electrode). A 

switch in the directionality of the information flow was 

instead observed during both the movement planning 

and the movement execution phases, with a significant 

information flow directed from C3 to C4 

electrode.

F3
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P3
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Figure 2: schematic representation of the different 

periods of the motor task within the 8-s-long epoch (A); 

statistically significant directional relationships between 

all electrodes in the different periods of the motor task 

(B). 

4 Discussion 

In this work we exploited the coefficients matrix 

obtained from a bivariate TVAM to quantify the 

directional relationships between couples of EEG 

channels during the performance of a motor task. 

Previous studies also addressed this topic using 

bivariate/multivariate TVAM [4–6]. In these works, the 

indices that quantify the coupling between EEG signals 

were always evaluated within time-invariant frequency 

bands associated to the rhythms of interest. However, 

this might not be the proper approach when there is an 

interest in exploring the evolution in time of a certain 

phenomenon (e.g., brain activity modifications induced 

by sensorimotor processes during the performance of a 

motor task). In fact, it cannot be given for granted that a 

time-invariant frequency band contain all the power 

associated to the rhythms of interest during the whole 

motor task. To overcome this limitation, we quantified 

the directional relationships between couples of 

electrodes by evaluating the NDTF within time-variant 

frequency bands, which were defined from the 

knowledge of the model poles position in 

correspondence of each time instant of the motor task. 

Our results show that the contralateral motor cortex 

(i.e. C3 electrode) is the source of the information flow 

towards the premotor cortex (i.e. F3 electrode) and the 

posterior parietal cortex (i.e. P3 electrode) during all the 
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different phases of the motor protocol. Concerning the 

fronto-central interaction, the information flow is 

directed from the motor cortex to the premotor cortex. 

This result is in accordance with findings from Labyt 

and colleagues, who reported that the enrollment of the 

premotor cortex in movement planning is secondary to 

the engagement of the primary motor cortex when cue-

paced targeting movements are performed [14]. 

Concerning the fronto-parietal interaction, the 

information flow is directed from the premotor cortex to 

the posterior parietal cortex during both movement 

planning and execution phases, while a switch of 

directionality is found during the post-movement 

period. The former result is in line with findings from 

the literature, since the premotor cortex has been found 

to be activated earlier than the posterior parietal cortex 

when a pointing/reaching movement is planned [12]. 

We hypothesize that the reversal of the information 

flow during the post-movement period could be due to 

the visual feedback received by the subject after 

movement termination. Our results about directional 

interactions between C3-P3 and F3-P3 couples are in 

line with findings from Babiloni and colleagues, who 

found the posterior parietal cortex receiving peripheral 

somatosensory and motor information from the primary 

sensorimotor cortex and from the dorsal premotor 

cortex during movement preparation and execution 

[13]. Regarding the inter-hemispheric interaction 

between left and right motor cortices, the information 

flow is directed from the contralateral area (i.e. C3 

electrode) to the ipsilateral area (i.e. C4 electrode) 

during movement planning and execution, as also 

observed by Athanasiou and colleagues during the 

planning and execution phases of a cue-paced biceps 

flexion of the forearm [15]. 
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Abstract 

In this paper an automatic ocular artifacts 
management procedure for EEG analysis on-line 
is proposed, composed of a detection algorithm 
followed by a correction which is based on 
canonical correlation analysis (CCA). The 
accuracy of the whole method is tested on 
simulated signals and its capability of recovering 
the original signals is shown to be comparable with 
non-automatic ‘gold standard’ procedure 
(independent component analysis - ICA). The 
method is implemented to be suitable for fast EEG 
processing to improve on-line signal interpretation. 
An example on real data is also provided. 

Keywords: canonical correlation analysis; 
Electroencephalography; ocular artifacts; 

1 Introduction 

The Electroencephalography (EEG) is a non-invasive 

technique used for the measurement of a subject’s 

electrical brain activity directly on the scalp. Since it is 

characterized by a very high temporal resolution, it 

results to be suitable for the extraction of information 

about fast neural changes induced by cognitive and 

motor processes. Unfortunately, EEG is also 

characterized by a low signal-to-noise ratio (SNR); 

indeed, the signal of interest is usually contaminated by 

a large amount of physiological signals that are not 

related to cerebral activity (i.e., ocular movements, eye 

blinks, cardiac activity and muscular activity) and have 

a much higher amplitude [1, 2]. These non-brain-related 

electrical activities severely affect the extracted 

information leading to a wrong interpretation of the 

neural processes, particularly when an on-line 

elaboration is performed as, for example, in Brain 

Computer Interface (BCI) devices [1, 3]. This is 

particularly true for ocular artifacts (OA) since they 

cannot be prevented and their amplitude is at least 10 

times higher than EEG activity. Several approaches 

have been proposed in the literature with the aim of 

removing OA and not simply rejecting them, in order to 

prevent loss of information [3, 4]. Recently methods 

such as spatial decompositions (i.e., Principal 

Component Analysis, PCA [5]) and blind source 

separation (BSS) (i.e., optimized implementation of 

Independent Component Analysis (ICA) algorithm [1, 

6] and Canonical Correlation Analysis CCA [7-9]) are

widely employed in absence of a simultaneous

electrooculography (EOG) recording.

CCA approach has been initially proposed only for 

muscular artifact correction [7] since it is able to order 

the extracted sources by their autocorrelation 

coefficient, which usually results to be very low for 

electromiographic (EMG) components [7, 10]. More 

recently this approach has been applied also for OA 

removal both in manual and automatic implementation 

[2, 9], while its relatively low complexity [4] allows a 

fast implementation suitable for on-line applications. 

Thus, in this work, we propose an artifacts management 

method for possible on-line applications, which is 

composed by two steps, i) artifacts detection [11] by 

using thresholds on four parameters; ii) automatic 

artifacts correction based on BSS-CCA algorithm [10], 

validated on simulated data. Finally we show how this 

method could improve on-line signal interpretation for 

cognitive task monitoring.  

2 Methods 

Detection method 

The proposed artifacts detection method is based on the 

‘single-channel, single-epoch’ artifacts detection step 

belonging to the well-known FASTER toolbox, 

previously proposed by Nolan and coworkers [11], 

adapted for on-line implementation. We exploited this 

particular section  because it can be applied to short 

data epochs, and the employed parameters are intuitive 

and fast to compute. Since the detection method is 

based on parameters thresholding, a sufficient number 

of signal windows has to be collected to serve as 

baseline segments on which, after a classical amplitude 

thresholding (max<100µm  min>-100 µm), the mean, 

the variance and the standard deviation are computed 

[11]. After that, for each channel and baseline window 

the following parameters are computed during the 

whole training period: i) the variance; ii) the median of 

the gradient; iii) the amplitude range of the channel and 

iv) the deviation of the mean amplitude from the

channel mean amplitude.

Thus, the thresholds are computed through the ‘three

sigma rule’ formula [12] at the end of this training step.

The above-described four parameters are computed for

each new 2-s-long window in input and their values are

compared with the thresholds. An artifact is detected if

N (1 to 4) parameters contemporary cross their

thresholds for at least one channel.

Artifact correction 

We employed the classical canonical correlation 

analysis as blind source separation algorithm as 

proposed by several authors [2, 7–10]. 

The CCA is a statistical approach to solve the BSS 

problem. In particular when the two sets of signals are 
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the observed data X(t) and their one-sample delayed 

version Y(t), the CCA finds two sets of basis vectors 

such that the correlation matrix between the described 

signals is a diagonal matrix in the new basis [2, 10]. 

After removing the mean of each row from the data 

matrices X(t) and Y(t), the linear combinations a = w
T

a 

X and b = w
T

bY, of the components in X and Y are 

called ‘canonical variables’, where wa and wb are the 

canonical weights vectors. CCA finds the weight 

vectors by maximizing the correlation ρ (Eq.1) between 

the variables a and b,  

  

)()( bYYb
T

aXXa
T

bXYa
T

wCwwCw

wCw
  (1) 

 

where CXX and CYY are the nonsingular covariance 

matrices of X and Y, while CXY is covariance matrix 

between the two sets. 

BSS-CCA extracts sources that are uncorrelated with 

each other, but maximally auto-correlated and orders 

them by decreasing ρ values[7]. 

Finally, the BSS problem is solved by computing the 

time series ai(t) corresponding to the signal sources 

Si(t). In this work we adapted the Matlab function 

implemented by [7] and freely downloadable.  

Every time an artifact is detected, the BSS-CCA 

algorithm is executed to identify M sources (M = 

number of channels). A source of the S(t) matrix is 

automatically labeled as an artifact source based on a 

thresholding method applied to three parameters (i.e., 

the kurtosis [1], the amplitude and the correlation 

coefficient (ρ) [8]) computed on each obtained source. 

A source of artifact is identified if: 

 its amplitude and kurtosis values contemporary 

exceed their thresholds, meaning that a high 

amplitude artifact is present; 

 the amplitude remains higher than the threshold for 

at least 100 ms, identifying a blink artifact;  

 the correlation coefficient is lower than a selected 

level, meaning that the source, having a very low 

autocorrelation value, mainly resembles an EMG 

artifact [7, 8]. 

In particular, the amplitude and kurtosis thresholds are 

automatically computed as mean value + standard 

deviation; a minimum level for the correlation 

coefficient is manually empirically selected on the data 

since correlations coefficients are sorted in a descendent 

order. To finally correct the artifact, the weights 

associated to the identified artifact source are set to zero 

and the clean data are computed as Xclean(t) = 

Wclean*S(t). 

Simulated data 

In order to create realistic simulated signals corrupted 

by artifacts, we selected real EEG signals from our 

database in order to provide both clean EEG 

background and artifacts source.  

In particular we selected signals recorded on subjects 

performing a two minutes rest recording with eyes 

open. EEG signals were recorded by means of a Sam32 

amplifier (MICROMED, Mogliano Veneto, Italy), 19 

Ag/AgCl surface electrodes were placed on the scalp 

according to the 10-20 International System with 

reference on the right earlobe. The impedance of every 

electrode was kept below 10kΩ. The sampling 

frequency was set to 256 Hz, an antialiasing low-pass 

filter and a notch filter were set at 120 Hz and 50 Hz 

respectively. Data were then digitally band-pass filtered 

in the range 1 - 70 Hz by means of a finite impulse 

response filter (FIR). 

125 2-s-long EEG epochs from subject 1 and 95 epochs 

of the same duration from subject 2 were selected as 

underlying clean EEG background, since no muscular 

or blink artifacts were present according to visual 

inspection. The clean windows were stored as two 3-D 

matrices (number of channels x number of samples x 

number of windows), one for each ‘clean’ EEG 

background source (2 subjects). 

We obtained a real distribution of blink and eye 

movement artifacts over the EEG electrodes by 

applying ICA (INFOMAX)[13] to the signals belonging 

to other subjects from the same database in order to 

remove the sources of EEG activity, while maintaining 

only the evident artifacts sources [7] (blink source from 

2 subjects). We reproduced the realistic artifacts 

distribution over the EEG channels by back-propagation 

[9]; then the obtained signals were segmented into 2-s-

long windows. To remove any possible EEG-related 

activity, the blink artifacts were band-pass filtered 

between 2 and 7 Hz (second order Butterworth) and 

finally stored in two separated matrices called 

‘BLINK1’ and ‘BLINK2’. The final step of the 

simulation was the summation of the randomly selected 

artifact windows from ‘BLINK1’ or ‘BLINK2’ matrices 

to the clean’ EEG background windows [5, 9]. 

Real data 

From the same database, we selected an EEG recorded 

on a subject performing 2 minutes of mathematical 

computations and 2 minutes of rest with eyes open, 

exactly with the same set-up and pre-processing steps 

described above.  

We exploited this recording to simulate an on-line 

extraction of an attention measure (β-power/α-power) 

[14] with and without the OA correction. 

3 Results 

Simulation results 

In our study we employed two clean datasets on which 

artifacts were randomly added. The results presented 

here are obtained by computing the detection thresholds 

on 30 baseline windows and by setting the number of 

contemporary exceeded thresholds equal to 2 (see 

section 2). Concerning the correction, we empirically 

set the correlation threshold at 0.55. As regards the 

detection performances, since for the simulated datasets 

the relative ground truth was available, we computed 

the detection accuracy (ACC), sensitivity (SE) and 

specificity (SP) [12]. On our four datasets we obtained a 

mean ACC of 0.90 (±0.03), SE and SP values 

respectively of 1 and 0.65 (±0.18). 
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The method was able to detect all the inserted artifacts, 

while the low SP values can be due both to the selected 

number of thresholds to be contemporary exceeded and 

to the effective low number of artifact-free windows 

inserted in each dataset. 

In Fig.1 an example of correction on a 2-s-long 

window, in which the presence of a blink was detected, 

is presented. Fig.1A reports the extracted CCA 

components and the three parameters considered to 

automatically reject the artifact source (correlation, 

kurtosis and amplitude).  In this example the first two 

sources are removed because they both exceed the 

kurtosis and amplitude thresholds and furthermore, the 

first component also presents an amplitude higher than 

the threshold for at least 100 ms. The correction result 

is shown in panel B. In order to quantitatively measure 

the capability of the correction method of maintaining 

the underlying EEG signals, as in [2, 6, 9] the 

correlation coefficient CC between the original clean 

signals and the respective corrected signals was 

employed.  

 
Figure1.  A) example of extracted CCA components 

and relative computed parameters (ρ, kurtosis and 

amplitude); B) correction result. 

The mean and standard deviation values of CC 

computed on each electrode across the 233 corrected 2-

s-long epochs were computed (EEG epochs correctly 

identified as clean are not included, in order not to 

artificially enhance correction method performances) 

and compared with the CC result obtained on the same 

signals after correction employing ICA (INFOMAX) 

[13] on the whole signal and removing by visual 

inspection only the blink component (only the 1
st
  

component was removed). 

As expected the more affected electrodes are the frontal 

ones (Fp1, Fp2, F7, F3, Fz, F4, F8) which reach a mean 

CC values of 0.834, while the central (T7, C3, Cz, C4, 

T8) and the posterior electrodes (P7, P3, Pz, P4, P8, O1, 

O2) result less corrupted by the correction method with 

a mean CC of 0.955 and 0.971 respectively. Despite 

being obtained on short windows of signals without the 

operator direct control on the number of components 

removed, these values result to be comparable with the 

performances obtained employing classical ICA method 

with manual correction (i.e. 0.854, 0.988 and 0.997). To 

finally check the feasibility of the proposed method for 

possible application in real-time elaboration, we 

measured the elapsed time for the complete processing 

of a 2-s-long window (detection and correction) 

obtaining a mean elapsed time of 0,012 (±0,013) ms. 

 

Cognitive task results 

The attention measure employed was the ratio between 

beta and alpha power, extracted from frontal electrodes 

(F3/F4, F7/F8) in 2-s-long signal windows. Since the 

frontal electrodes are known to be the most affected by 

OAs, misleading information is obtained when an OA 

occurs. In fact, as shown in Fig.2, the presence of a 

non-corrected blink could artificially increase alpha 

waves amplitude, while beta results to be almost 

unaffected. Since false increments of power in alpha 

and lower frequency bands could be interpreted as a 

decrease of attention [14] correction is very important. 

Fig.2A-B-C respectively represent the signal (F7) 

before (blue) and after (red) correction and the 

corresponding extracted alpha and beta waves. Boxplots 

in panel D show the distribution of the measured 

beta/alpha ratio with and without correction during 2 

minutes of mathematical calculations and 2 minutes at 

rest, on windows of 2 seconds (50% overlap). In both 

conditions (Math and Rest) the measured values, when 

computed after OA correction, are increased and also 

the difference of the median of the two conditions 

(Math-Rest)  is increased after correction (54% with 

correction, 40% without correction). 

4 Conclusion 

This study addressed the challenge of automatic 

management of ocular artifacts in EEG recordings, with 

particular attention to on-line applications. Thus we 

proposed a two steps approach (detection and BSS-

CCA based correction) in order to improve on-line 

signal interpretation. The method was tested on 

simulated data and quantitatively evaluated by 

computing detection accuracy [12] and comparing the 

correction results with classical ICA approach [2]. 

Despite an initial optimal parameters selection was 

needed, the detection step showed good accuracy and 

high sensitivity values on our simulated datasets.  

Correction results were found to be comparable with 

classical ICA and visual inspection approach, thus 

supporting this method as effective for OA 

management. We also showed that, during a cognitive 

task the employed attention index calculation is more 

reliable after blink artifact removal.  
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As future work, the proposed approach should be tested 

on different window lengths and muscular artifacts 

should also be considered. Finally, the actual on-line 

feasibility should be rigorously tested. 
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Figure 2. A) signal (F7) before (blue) and after (red) correction and the corresponding (B) alpha and (C) beta waves. D) 

boxplot of distribution of the measured beta/alpha values with and without correction during mathematical computations 

and rest. 
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Abstract

Topographic analysis are references independent
for Event-Related Potentials (ERPs), and thus
render statistically unambiguous results. This drives
us to develop an effective clustering approach to
finding temporal samples possessing similar
topographies for analysing the temporal-spatial
ERPs data. The previous study called CARTOOL
used single clustering method to cluster ERP data.
Indeed, given a clustering method, the quality of
clustering varies with data and the number of
clusters, motivating us to implement and compare
multiple clustering algorithms via using multiple
distance functions. By finding the minimum distance
among the various clustering methods and
selecting the most selected clustering algorithms
with other methods via voting the proposed method,
a most suitable algorithm showing a considerable
performance for a given dataset can be found. This
cluster aggregation approach assists to use the
most suitable founded cluster for each dataset. We
demonstrated the effectiveness of the proposed
method by using ERP data for cognitive
neuroscience research.

Keywords Cluster Aggregation, Cognitive
Neuroscience, ERP Data Analysis, Spatial, Temporal.

1 Introduction

Event-related potentials (ERPs) are important tools for
cognitive neuroscience by analyzing peak measurements
[1]. Usually, the mean amplitude of an ERP over a
certain time range is measured as the peak amplitude for
statistical analysis [1]. The underlying assumption of this
approach is that the topographies over that certain time
range do not change. In order to validate the assumption,
the clustering has been applied the temporal-spatial ERP
data to find the temporal samples sharing the similar
spatial topographies [2].

In the latest version of CARTOOL software 3.55
(2014), it is possible to use one of the two Clustering
methods named; K-means and Hierarchical clustering
with some good selective options [2]. It could be
considerable that clustering algorithm selection and the
quality of clustering would be affected by different

conditions such as, dataset types, quality of data and etc.
In this study, we demonstrate that for given dataset the
proposed method can find a suitable clustering algorithm
among various ones in a reliable way.

The following of the study is structured into 3
Sections; we start with data mining technique clustering
in Section 2 and the cluster aggregation method is
described, Section 3 provides experimental results and
discussion about the results and Section 4 includes
conclusions and future works.

2 Method

Indeed, in clustering analysis, one solution to the
question above is the use of numerical clustering
validation algorithms and assessing the quality of
clustering results in terms of many criteria. Since it is
also true that no single clustering validation algorithm
has been claimed to impartially evaluate the results of
any clustering algorithm, the use of clustering validation
is not an overwhelmingly reliable solution [4]. In this
study, the two-way clustering is applied. Since the multi-
way analysis is significant for ERP data analysis [5], it is
worth extending the two-way clustering to the multi-way
clustering. Consequently, we propose a new approach for
that how to use cluster aggregation aim to deal with
uncertainty in datasets and clustering algorithms, using
multiple clustering methods and multiple distance
functions for cluster aggregation to achieve reliable
analysis.

2.1 Clustering Methods

In this study, five popular clustering algorithms are
used and they are briefly introduced as the following:
 K-means Clustering; which for Given a dataset with N

data objects in an M-dimensional feature space, this
algorithm determines a partition of K groups or
clusters which detailed in [6].

 Hierarchical Clustering; Basically Hierarchical
clustering algorithms are mainly classified into
methods (bottom-up methods) and divisive
agglomerative methods (top-down methods), based on
how the hierarchical divide or merge is formed [3].

 Fuzzy C-means (FCM); Dunn developed fuzzy k-
partition algorithms which minimize certain fuzzy
extensions of the k-means least-squared-error
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criterion function [7]. Eventually, the generalised
algorithm was named fuzzy c-means (FCM) [8].

 Self-Organizing Map (SOM); Clustering in the neural
network literature is generally based on competitive
learning (CL) model, Kohonen made particularly
strong implementation of CL in his work on learning
vector quantisation (LVQ) and self-organising maps
(SOM)  also known as self-organising feature maps
(SOFM) [9].

 Diffusion Maps Spectral Clustering; Spectral
clustering is an algorithm which is very close to the
graph cut clustering algorithm. It requires the
computation of the first k eigenvectors of a Laplacian
matrix; Diffusion map is a dimensionality reduction
method that embeds the high-dimensional data to a
low-dimensional space. Clustering is performed
within the low-dimensional space [10].

2.2 Distance Functions

Partition–Partition (P–P) Comparison approaches,
equivalent to median partition approaches, attempt to
provide the solution of an optimization problem, which
maximizes the total similarity to the given partitions [4].
In Eq.1 and Eq. 2, which R is the number of clustering
algorithms and C* is the clustering with maximum
similarity with the other clusterings and minimum
dissimilarity with them [4], There are several distance
functions for measuring similarity or dissimilarity
between partitions. More details have explained in [4].∗ = ∈ℙ ∑ ( , ) (1)∗ = ∈ℙ ∑ ℳ( , ) (2)

We used a number of distance functions aim to cluster
aggregation. Briefly, we describe them in below;

 Fowlkes and Mallows distance function

The Wallace distance of two clustering algorithms C,
C’ is; ( , ′) = ∑ ( ) (3)( , ′) = ∑ ( ) (4)

Where N11 is The number of pairs of objects that were
clustered in the same clusters in C and C’. They represent
the probability that a pair of points which are in the same
cluster C, C’.ℱ( , ) = ( , ′) ( , ′) (5)

The index is used by subtracting the base-line and
normalizing by the range, so that the expected value of
the normalized index is 0 while the maximum (attained
for identical clustering algorithms) is [11].

 Rand distance functionℛ( , ) = ( ) (6)

And N00 is The number of pairs of objects that were
clustered in separate clusters in C and also C’. A similar
transformation was introduced for Rand index and
Adjusted Rand Index.

 Adjust Rand distance function( , ) = ( , ) − [ ]1 − [ ] =∑ , ∑ ∑,
∑ ∑ ∑ ∑ / (7)

The main motivation for adjusting indices like R and F
is the observation that the unadjusted R, F do not range
over the entire [0, 1] interval (i.e. min R > 0, min F > 0).
There are other criteria in the literature, to which the
above discussion applies. For instance, the Jaccard index
in [11].

 Jaccard distance function

Jaccard index for two clustering algorithms C, C’ is;( , ) = (8)

2.3 Cluster Aggregation

Clustering comparison can be useful for examining
whether the structures of the clusters match to some
predefined classification of the instances. In fact,
researchers use different distance algorithms, even
clustering ensemble causes to obtain good results most
of the time, but we tried aggregation with acceptable
workload. The consensus clustering problem is
considered as an NP-hard problem [11] yet, we are still
able to provide approximation guarantees for many of the
algorithms we propose via using a combination of
different distance functions. Fig. 1 illustrates the
proposed aggregation algorithm model.

Clustering algorithms results can be compared
together with the mentioned distance functions. To
compare the clustering algorithm results and eventually
to make distance table, we have used the distance
functions’ results. This means that, the clustering
algorithms are selected with a maximum value of
similarity by the other algorithms in the distance tables.
Next voting assisted to find which clustering has selected
more than the others. The final decision is made based
on the voting table to find a suitable clustering algorithm.

Figure 1: The cluster aggregation model.
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3 Experimental Results and Discussion

We implemented the proposed algorithm by using five
clustering algorithms and four distance functions. First,
because these algorithms are standard and also we need
to control the number of clusters in proposed algorithm.
In this study, ERP data which have been published in
[12] for the gamboling task is used. We just selected one
subject and one stimulus data randomly and the size was
500 temporal samples by 58 electrodes (features for each
sample). Absolutely, we applied it to all the subjects’
data to find group behavior which is very important in
cognitive neuroscience. The main goal is to find ERP
components using the proposed method. Fig. 2 presents
the 5 algorithms clustering performance for the sample
dataset. Indeed, we considered the CARTOOL proposed
algorithms (k-means and Hierarchical Clustering) as it is
shown in this figure. We applied clustering algorithms
for this dataset with 6 clusters according to eigenvalues
distribution and the explained variance value diagram.
Due to the limited space, they are not shown here.

Fig. 3 demonstrates distance function tables based on
4 distance functions (Rand, Adjusted Rand, Fowlkes and
Mallow and Jaccard indices) and for five clustering
algorithms in the order with: K-means (1), Hierarchical
(2), FCM (3), SOM (4) and Diff-Spec (5). Moreover,
Table 1 and Table 2 illustrate aggregation algorithm
results. Table 2 shows that the K-means have been
selected 8 times by the other clustering methods, as a
result K-means is used as the suitable method after
comparison.

Comp.
No.

Distance
Func.

Clustering
Meth.

Selected
Meth.

Similarity
Value

1 1 1 4 0.9912
2 1 2 5 0.8768
3 1 3 1 0.9162
4 1 4 1 0.9912
5 1 5 2 0.8768
6 2 1 4 0.9721
7 2 2 5 0.6136
8 2 3 1 0.7261
9 2 4 1 0.9721

10 2 5 2 0.6136
11 3 1 4 0.9776
12 3 2 5 0.6931
13 3 3 1 0.7781
14 3 4 1 0.9776
15 3 5 2 0.6931
16 4 1 4 0.9415
17 4 2 5 0.6221
18 4 3 1 0.6032
19 4 4 1 0.9712
20 4 5 3 0.4763

Table 1: How the clustering algorithms select similar one for
them based on distance functions.

Table 2: Voting table for the selected methods.

Inner similarity of objects inside clusters is presented in
Fig. 4, reasonable correlation in order to objects in each
cluster is appeared. Fig. 5 shows the inter-cluster
correlation and it means that the clusters are enough
separated. Moreover, it would be very important to
recognize important time windows corresponding to
related ERP waveform. This concept is shown in Fig. 6.
Fig. 7 presents the topography of these clusters according

K-means Hierarchical FCM SOM Diff_Spec
8 3 1 4 4

Figure 4:  Correlation between 6 clusters.

Figure 2: The 5 clustering algorithms membership
plots.

Figure 3: Four Distance function tables for 5 clustering
algorithms.
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to 6 clusters. It is clearly seen that there are 6 different
topography results for 6 clusters and it means that all the
time points in each cluster have same topography and we
could treat them as a point, this advantage assists us to find
the reasonable time range to average the amplitudes for the
ERP peak measurement, providing a reliable and objective
way for cognitive neuroscience research. Due to the length
limitation of the study, we will report the results of the full
ERP dataset in the future study.

4 Conclusions and Future Works
In this study, we have proposed an effective approach

to finding the temporal samples sharing similar
topographies of ERPs for cognitive neuroscience
research. Using several distance functions to find a better
algorithm for clustering makes this method more reliable
and suitable for processing ERP data. In future works,
we are going to improve the method for brain signal
processing by using clustering ensemble and consider
other different datasets for processing.
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